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Chapter 11

Chemical reaction kinetic perspective with mesoscopic
nonequilibrium thermodynamics

Hong Qian

We distinguish a mechanical representation of the real world in terms of point

masses with positions and momenta and the chemical representation of the real

world in terms of populations of different individuals, each with intrinsic stochas-

ticity, but population wise with statistical rate laws in their syntheses, degrada-

tions, spatial diffusion, individual’s state transitions, and interactions. Such a

formal kinetic system in a small volume V , like a single cell, can be rigorously

treated at a mesoscopic scale in terms of a Markov process describing its nonlin-

ear kinetics as well as a nonequilibrium thermodynamics. We introduce notions

such as open, driven chemical systems, entropy and its production, free energy

and its dissipation, etc. Then in the macroscopic limit when the V tends to in-

finity, we illustrate how two new “laws”, in terms of a generalized free energy

of the mesoscopic stochastic dynamics, emerge. Detailed balance and complex

balance are two special classes of “simple” nonlinear kinetics. Phase transition is

intrinsically related to multi-stability and saddle-node bifurcation phenomenon,

in the limits of time t → ∞ as well as system’s size V → ∞. Using this

approach, we re-articulate the notion of inanimate equilibrium branch of a sys-

tem and nonequilibrium state of a living, active matter, as originally proposed by

Nicolis and Prigogine, and seek a logic consistency between this viewpoint and

that of P. W. Anderson and J. J. Hopfield’s in which macroscopic law emerges

through symmetry breaking.

1. Introduction

This is the Part I of a series on a comprehensive theory of complex systems [1, 2].

Taking living biological cells as an archetype and biochemical kinetic approach

as a paradigm, we consider a system complex if it contains many interacting sub-

populations of individuals that undergo non-deterministic state transitions, and it

interacts with its environment through active transports of matters and energy, or

information. For examples, tumor is a community of heterogeneous individual

cells; economy concerns with individual agents, and ecology deals with various

biological organisms.

The above “definition” of a complex system immediately reminds us of
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several major areas of studies: nonequilibrium thermodynamics, statistical

physics, nonlinear dynamics, stochastic processes, and information theory are

some of the widely acknowledged. Ours, however, is not a “new” theory, rather

it is a coherent narrative that synthesizes a wide range of methodologies and

thoughts contained in the mentioned above. One can easily find in this paper sig-

nificant influences from the various theories on complexity: the Brussels school of

thermodynamics that describes nonequilibrium phenomena in terms of chemical

affinity and entropy production [3–6]; the stochastic-process approach to nonequi-

librium ensemble theory and entropy production [7–10]; the theory of synergetics

which articulates the ideas of nonequilibrium potential and phase transition, as

well as slaving principle as an emergent phenomenon near a critical point [11, 12];

the notion of symmetry breaking from the phase transition lore in condensed

matter physics [13–16]; catastrophe theory in connection to nonlinear bifurca-

tion [17, 18].

The unique features of our approach are as follows: First, we have two con-

crete examples of complex chemical systems in mind: A single protein molecule,

which consists of a large collection of heterogeneous atoms, in an aqueous so-

lution as a non-driven (closed) chemical system [19], and a single cell, which

consists of a large number of different biomolecular species, in a culture medium

as a driven open chemical system [20]. While closed and open chemical systems

have fundamentally different thermodynamics, some of the key aspects of nonlin-

ear stochastic dynamics are remarkably consistent: 1) Nonlinearity gives rise to

discrete states, e.g., conformational states of a protein and epi-genetic states of a

cell; 2) stochasticity yields discrete transitions among the states on a much longer

time scale. Both systems can be mathematically described in terms of nonlinear

stochastic kinetics.

The second feature of our approach is following what the nonlinear, stochastic

mathematics tells us [21]. For examples: i) For many of the stochastic models of

open chemical systems, one can prove the existence of a unique, ergodic steady

state probability distribution, even though its computation is often challenging

toward which significant past research has been directed. But the latter should

not prevent one to develop a theory based on such a nonequilibrium steady state

(NESS) potential function. Indeed, we can show that the mere recognition of its

existence provides great logical consistency and theoretical insights in a theory.

ii) For Markov stochastic processes under a set of rather weak conditions, one can

show a set of mathematical theorems that have remarkable resemblance to the the-

ory of chemical thermodynamics, à la Gibbs, and Lewis and Randall [22, 23]. iii)

For any stochastic dynamics with a macroscopic bistability as fluctuations tending

to zero (ε → 0), symmetry breaking in the limit of ε → 0 following time t → ∞
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is a necessary consequence of the catastrophe in the nonlinear dynamics, obtained

from ε → 0 precedes t → ∞. While these mathematical results stand on their

own, their significance to our understanding of complex systems requires a narra-

tive that is constructed based on all the past theories, thoughts, and discussions.

The nonlinear stochastic dynamic description of complex systems embod-

ies two of the essential ingredients of Darwin’s theory of biological evolution:

chance, variation, diversity on the one hand and necessity, selection on the other

[11, 24–26]. The chemical kinetic theory of living cells based on the Delbrück–

Gillespie process description [27–31] allows one to see how various abstract

“forces of nature” emerge and play out in a complex system, with individual play-

ers as simple, or as complex, as macromolecules.

1.1. Mechanics and chemistry

Mechanics and chemistry offer two very different perspectives of a complex sys-

tem: the former considers the world made of featureless individuals, the point
masses,a with precise positions and velocities; the latter, however, entertains a

world made of many types of individuals, each with different internal characteris-

tics. Due to the uniqueness of space and time, each and every point mass is unique.

On the other hand, modern studies have shown that individual single molecules in

aqueous solution behavior differently: They have individualities [32, 33]. More

interestingly, when dealing with many-body systems, even fluid mechanics and

quantum mechanics turn their representations from tracking the state of individ-

ual particles to counting the numbers: the switching from Lagrangian to Eulerian

descriptions in the former and second quantization in the latter.

The “chemical kinetic view” of the complex world goes much beyond chem-

istry: Reaction S + I → 2I is known as autocatalysis in chemistry, with the

S being a reactant and I being its product which also serves as a catalyst for a

transformation of an S to an I . The same “kinetic scheme” also describes infec-

tion in an epidemiological dynamics, with S and I representing susceptible and

infectious individuals, respectively. In fact, we argue that much of the complex

systems beyond chemistry contain interacting subpopulations of individuals that

undergo non-deterministic state transitions. The chemical view actually offers a

reasonable organization of P. W. Anderson’s X and Y in the hierarchical structure

aA more profound insight is that no matter how complex interactions among a collection of point

masses are, its center of mass behaves as a single featureless point mass. However, a system with

frictional force no longer has this crucial property.
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of science [13]:

X Y

many-body physics particle physics

chemistry many-body physics

molecular biology chemistry

cell biology molecular biology
...

...

psychology physiology

social sciences psychology

We note that each X in the left column consists of collections of “individuals”

characterized by the Y on the right.

2. Chemical kinetics and chemical thermodynamics

2.1. A single chemical reaction as an emergent phenomenon

Is a biochemical macromolecule, a protein, immersed in an aqueous solution sim-

ple or complex? The answer to this question depends on one’s perspective, and

time scale [15]. From the standpoint of molecular physics and in terms of the

large number of atoms that are constantly in collisions with each other and with

solvent molecules, this is a quite complex system which has its own emergent

phenomenon.

The mechanical motions described by a Newtonian molecular dynamics (MD)

with solvent molecules being explicitly treated, usually on the time scale of fem-

tosecond (10−15 sec.), exhibit great complexity. Yet, the notions of “reaction

coordinate” (e.g., order parameter) and “transition state” (e.g., critical state), plus

a single rate constant which is on the microsecond to millisecond time scale, fully

describe the exponential law for an elementary, unimolecular chemical reaction.

This emergent phenomenon has been mathematically described in H. A. Kramers’

nonlinear, stochastic theory of energy barrier crossing [34], and the rigorous math-

ematics of Freidlin–Wentzell theory [35–37].

2.2. Chemical kinetics and elementary reactions

Just as point mass is a fundamental concept in mechanics, elemetary reaction is a

fundamental concept in chemical kinetics: A reaction like

ν+1 A1 + ν+2 A2 + · · · ν+NAN −→ ν−1 A1 + ν−2 A2 + · · · ν−NAN

is said to be elementary if the discrete event of transformation has an exponen-

tially distributed waiting time with rate r, which is a function of numbers of the
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reactants, n1, n2, · · · , nN , in a reaction vessel with volume V . If the rate r has

the form of

r = kV
N∏
�=1

(
n�(n� − 1) · · · (n� − ν+� + 1)

V ν+
�

)
, (1)

in which n� is the number of molecule A� in the vessel, then we said the reaction

follows the law of mass action with rate constant k. In a macroscopic sized system,

in terms of concentrations x1, x2, · · · , xN , the reaction flux in (1) becomes

J =
r

V
= k

N∏
�

x
ν+
�

� , (2)

in which x� = n�/V is the concentration of the reactant A�. For example, the

nonlinear kinetic system

S + I
k1−→ 2I, I

k2−→ R, (3)

has a macroscopic kinetic equation following the law of mass action

dx

dt
= k1xy − k2x,

dy

dt
= −k1xy,

dz

dt
= k2x, (4)

where x, y, and z are the concentrations of chemical species I , S, and R, respec-

tively. In the mathematical theory of infectious diseases, however, the same set of

equations represent the SIR model [38]. The population dynamics of species in an

infectious disease, in ecological dynamics, and chemical species in a rapid stirred

reaction vessel, actually share a great deal of commonality: They are all complex

nonlinear systems consisting of heterogeneous interacting individuals.

2.3. Mesoscopic description of chemical kinetics

The readers are referred to the earlier review articles [39, 40], the Chapter 11

of [41], and the recent texts [31, 42].

3. Nonequilibrium thermodynamics (NET)

The notion of elementary reactions as presented above is fundamentally a stochas-

tic one in which a chemical reaction in an aqueous solution is represented by a rare

event in the many-body, heterogeneous atomic system. Each reaction as a single

random event is the focus of the Kramers’ theory whose prediction is that, when

an energy barrier is high, all the complex atomic motions in a unimolecular transi-

tion can be represented by a single parameter, the rate constant k. For bimolecular

reactions, a diffusion based theory in three-dimensional physical space was first
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proposed by M. von Smolochowski (1917), and further developed by Collins and

Kimball (1949), A. Szabo and his coworkers [43, 44].

While Kramers’ theory connects stochastic molecular state transitions to the

motions of the constitutive atoms, a cell consists of a great many macromolecular

species and biochemical reactions. The Delbrück–Gillespie process describes the

stochastic kinetics of such a system, with two complementary representations:

Either in terms of the random, fluctuating number of all molecular species, �n =[
n1(t), n2(t), · · · , nN (t)

]
that follows Gillespie algorithm [30], or in terms of

the probability distribution p(m1, · · · ,mN ; t) = Pr{n1(t) = m1, · · · , nN (t) =

mN} that satisfies the Chemical Master Equation (CME) [28, 29]. This theory of

mesoscopic stochastic chemical kinetics has rapidly become a mature subject in

recent years [31].

We use the term “mesoscopic” in partial agreement with van Kampen [45],

Ch. III, p. 57, who stated that “[t]he stochastic description in terms of macro-

scopic variables ... It comprises both the deterministic laws and the fluctuations

about them”. There is an important difference, however, between this and our

view: What implicitly assumed by van Kampen and physicists of his time was

a top-down, macroscopic law known first followed by fluctuations theory; it is a

phenomenological approach pioneered by Einstein.

The stochastic chemical kinetic theory is different. With a foundation laid

by Kramers’ theory, a stochastic chemical kinetic model is mechanistic. The

deterministic laws then can be mathematically derived, as has been shown by

T. G. Kurtz [29]. This conceptual distinction also leads to an essential practi-

cal difference: The “noise structure” in the traditional top-down models can only

be determined by additional assumptions, e.g., fluctuation-dissipation relation for

equilibrium fluctuations. The noise structure in a Delbrück–Gillespie model is

completely specified by the chemical kinetics.

The most general setup for a mesoscopic chemical kinetics in a rapidly stirred

reaction vessel with volume V considers N chemical species and M elementary

chemical reactions:

ν+�1X1 + ν+�2X2 + · · · ν+�NXN

r+�

GGGGGBF GGGGG

r−�

ν−�1X1 + ν−�2X2 + · · · ν−�NXN , (5)

in which both r±� are functions of �n and V , 1 ≤ � ≤ M . ν±�j are stoichiometric

coefficients for the forward and the backward reactions ±�.

In applied mathematics, compared with what we know abut ordinary differen-

tial equations beyond the existence and uniqueness theorems, we currently know

very little about the Delbrück–Gillespie process.
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3.1. Gibbs’ chemical thermodynamics

It is widely agreed upon that thermodynamic behavior is an emergent phenomenon

of systems with a large number of components. L. Boltzmann’s attempt, to pro-

vide macroscopic thermodynamics with a Newtonian mechanical foundation, has

provided continuous inspiration for understand complexity. Consider a mechan-

ical system, a box of gas with volume V and number of particles N , described

by Hamiltonian dynamic equation ṗ = ∂H(p, q/∂q and q̇ = −∂H(p, q)/∂p.

According to Boltzmann’s fundamental insight [46], a macroscopic thermody-

namic state is a state of motion, the entire level set of H(p, q;V,N) = E, which

is determined by the initial condition of the differential equation. Then entropy

S = kB lnΩ(E, V,N) where Ω(E, V,N) is the phase volume contained by the

level set. Thus there exists a definitive function S = S(E, V,N). It then follows

from elementary calculus:

dE =

(
∂E

∂S

)
V,N

dS +

(
∂E

∂V

)
S,N

dV +

(
∂E

∂N

)
S,V

dN (6)

in which (∂E/∂S)V,N = T is identified as temperature, (∂E/∂V )S,N = −p is

identified as pressure, and pdV is mechanical work. (∂E/∂N)S,V = μ is called

chemical potential.

Consequently thermodynamic quantities such as T , p, and μ are emergent

concepts themselves. However, for both T and p clear mechanical interpretations
have been found: T being mean kinetic energy and p the momentum transfer

upon collision of gaseous molecules on the wall of the box. However, one yet

to find a clear mechanical interpretation for μ. The chemical potential μ has a

μo part and a log concentration (or mole fraction) part. The particles in (6) are

supposed to be featureless point masses. But if they can be further decomposed

into collections of particles, such as molecules in terms of atoms, then the μ can

be further interpreted in mechanical terms. The current molecular theory of μo is

based on such a “mechanical” view, classical or quantum.

The entire living phenomena are mostly driven by Δμ, not ΔT or Δp. Chem-

istry kinetics offers a concrete example of complex systems.

3.2. The source of complexity

Biological systems are archetypes of complex system. Why biological and com-

plex systems look so different from those in physics? J. J. Hopfield [14], together

with many other condensed matter physicists [6, 12, 47], have all pointed to the

information content of a system, and the notion of symmetry breaking as the key

elements of complex systems [13, 15, 16]. The notion of symmetry breaking,
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in a broad sense, is best illustrated in a mesoscopic kinetics with finite volume

V : When V is small, the Markov dynamics is ergodic. Multi-stability in this

system is represented by multiple peaks of the stationary probability distribution

pss(n1, n2, · · · , nN ;V ) [5, 11, 18]. However, when V → ∞, the different peak

regions correspond to different basins of attraction according to the systems of

ordinary differential equations (ODEs) that follow the law of mass action. The

dynamics of the deterministic ODEs has broken ergodicity: Dynamics starts in

one basin will never go to another basin. More interestingly, if one takes the limit

of V → ∞ after t → ∞ in the mesoscopic kinetic model, it predicts the system

has only a single attractor with probability 1. In fact, the stationary probability

distribution

V −1pss(x1V, x2V, · · · , xNV ;V ) ≈ Ξ−1(V )e−V ϕ(x1,x2,··· ,xN ), (7a)

Ξ(V ) =

∫
RN

e−V ϕ(�x)d�x, (7b)

in which ϕ(�x) has a global minimum of 0, at which the entire probability will con-

centrate when V → ∞ [48]. Phase transition occurs when the global minimum of

ϕ(�x) is not unique.

3.3. Macroscopic NET of continuous media

A summary of the standard formalism of macroscopic nonequilibrium thermody-

namics (NET) in continuous medium, as introduced in [49], can also be found

in [50]. In this theory, (i) the existence of a special macroscopic function s(x, t),

the instantaneous entropy density, is hypothesized via the local equilibrium as-
sumption, which yields

∂s(x, t)

∂t
= T−1(x, t)

[
∂u(x, t)

∂t
−

K∑
i=1

μi(x, t)
∂ci(x, t)

∂t

]
, (8)

in which u(x, t) is internal energy density, ci(x, t) is the concentration of the ith

chemical species, T and μi are temperature and chemical potentials. The theory

of NET then proceeds as follows:

(ii) Establishing continuity equations for u(x, t) and ci(x, t): ∂ut =

−∂xJu(x, t), ∂(ci)t = −∂xJi(x, t) +
∑M

j=1 νjirj , where Ju and Ji are energy

and particle fluxes in space, and rj is the rate of the jth reaction with stoichiomet-

ric coefficients νji;

(iii) Substituting the J’s and r’s into (8);

(iv) Grouping appropriate terms to obtain the density of entropy production

rate, σ(x, t), as “transport flux × thermodynamics force”, à la Onsager. The

remaining part is the entropy exchange flux Js(x, t): ∂s(x, t)/∂t = σ(x, t) −
∂xJs(x, t).
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3.4. Mesoscopic NET

The x in the above macroscopic NET represents the real three-dimensional phys-

ical space. One can apply a similar approach to a space of internal degrees of

freedom, as initiated by Prigogine and Mazur [53–56], or a dynamics in phase

space as in Bergmann and Lebowitz’s stochastic Liouville dynamics [9, 10].b In

these cases, the theory of mesoscopic NET proceeds as follows:

i) Introducing the entropy, or free energy, as a functional of the probability

distribution pα(t), α ∈ S for a discrete system, or probability density function

f(x, t); x ∈ R
n, for a continuous system. The introduction of entropy function in

the mesoscopic theory does not rely on the local equilibrium assumption. Rather,

one follows the fundamental idea of L. Boltzmann: The entropy is a functional

characterizing the statistics of phase space. One of such functionals for stochastic

processes is the Shannon entropy.

ii) Establishing the continuity equation in phase space connecting the proba-

bility distribution and probability flux:

dpα(t)

dt
=

∑
β∈S

(
Jβ→α(t)− Jα→β(t)

)
, (9a)

∂f(x, t)

∂t
= −∇x · J(x, t), (9b)

iii) Computing the time derivative of d
dtS[pn(t)], or d

dtS[f(x, t)], following

the chain rule for differentiation;

iv) Setting up entropy production rate σ in terms of bi-linear products of “ther-

modynamic fluxes” and “thermodynamic forces”, appropriately identified.

3.5. Mesoscopic NET as a foundation of stochastic dynamics

While the mathematics in the theory of mesoscopic nonequilibrium thermody-

namics (meso-NET), pioneered by Prigogine and Mazur [53, 54], and fully devel-

oped in recent years by Rubı́ and coworkers [56], are essentially the same as in

the theory of stochastic Liouville dynamics (Sec. 3.6) and the recently developed

stochastic thermodynamics (Sec. 4), the scientific narratives are quite different.

The goal for the former is to use meso-NET to derive the dynamics equations

for fluctuations of macroscopic quantities [55]; more specifically, Fokker–Planck

equation for probability density function f(x, t). To illustrate this, one starts with

bNot to be confused with the stochastic Liouville equations studied by R. Kubo [51], which has found

wide applications in the theory of nuclear magnetic resonance [52].
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the f(x, t) that necessarily satisfies a continuity equation in a phase space:

∂f(x, t)

∂t
= −

∑
i

∂

∂xi
Ji(x, t), (10a)

and non-adiabatic entropy production, or free energy dissipation [57]:

− d

dt

∫
Rn

f(x, t) ln

(
f(x, t)

π(x)

)
dx =

∫
Rn

f(x, t)σ(na)(x, t)dx, (10b)

in which the local density of non-adiabatic entropy production rate

σ(na)(x, t) = −
∑
i

Ji(x, t)
∂

∂xi
ln

(
f(x, t)

π(x)

)
, (10c)

where J(x, t) is the flux and the ∇ ln
[
f(x, t)/π(x)

]
is the thermodynamic

force: the gradient of the local chemical potential function. One also no-

tices that the thermodynamic force ∇ ln
[
f(x, t)/π(x)

]
can be further decom-

posed into X + ∇ ln f(x, t) where X = −∇ lnπ(x) is the thermodynamic

variables conjugate to x. Readers with a college chemistry background should

recognize this as ΔG = ΔGo + RT ln(concentration ratio), where ΔGo =

RT ln(equilibrium concentration ratio).

Now here comes as the point of departure between the narrative of meso-NET

and the narrative of stochastic thermodynamics: The former evokes Onsager’s

linear force-flux relation

Ji(x, t) = −
∑
j

Dij(x)
∂

∂xj
ln

(
f(x, t)

π(x)

)
. (11)

Note this relation is simply a generalized Fick’s law. Then it is well-known

that combining continuity equation (10a) with Fick’s law (11) yields the Fokker–

Planck equation.

To “justify” the stochastic descriptions of mesoscopic dynamics is one of the

fundamental tasks of statistical physics. Beside this meso-NET approach, there

are many others: Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierar-

chy, Mori–Zwanzig (MZ) projection, Markov partition and Kolmogorov–Sinai

entropy method, etc. Since the meso-NET approach is based on Onsager’s linear

relation, its validity is limited in the linear irreversible regime.

We note that for a discrete pα(t):

σ
(na)
αβ = (Jα→β − Jβ→α)Δμαβ , Δμαβ = ln

(
pαπβ

παpβ

)
. (12)

However, the flux J is not linearly related to the thermodynamic potential differ-

ence Δμ. The same logic will not work for the stochastic dynamics of mesoscopic

chemical kinetics.
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The linear Fick’s law and its alike are phenomenological relations. Derivation

of the macroscopic diffusion equation based on this line of arguments naturally

leads to more general nonlinear diffusion equation [58, 59]. The Fokker–Planck

equation in phase space, however, has a much more fundamental origin: It is a

mathematical consequence of Chapman–Kolmogorov’s integral equation for any

Markov process with continuous path in R
n [60]. In current stochastic thermo-

dynamics, one takes the stochastic, Markov dynamics as given. Nonequilibrium

thermodynamics is not used as a justification for stochastic descriptions of fluctu-

ations; rather, one attempts to derive nonequilibrium thermodynamics as a mathe-

matical consequence of stochastic dynamics, in either continuous or discrete state

space. As a matter of fact, base on such a Markov process hypothesis, one can

predict the Onsager’s linear force-flux relation, e.g., Fick’s law, for stochastic dy-

namics in continuous space, but it also predicts a non-linear force-flux relation

(e.g., Eq. (23) below) for stochastic dynamics with discrete state space, such as

mesoscopic chemical kinetics.

3.6. Stochastic Liouville dynamics

Bergmann and Lebowitz [9, 10] based their new approach to nonequilibrium pro-

cesses in the phase space on a Hamiltonian mechanical system that is in contact

with one, or multiple heat baths:

∂p(x, t)

∂t
+

{
p(x, t), H(x)

}
x
=

∫ [
K(x,x′)p(x′, t)−K(x′,x)p(x, t)

]
dx′

(13a)

in which {p,H} is the Poisson bracket, and the rhs represents the stochastic en-

counter with the heat bath(s). By introducing Helmholtz potental function

F
[
p(x)] =

∫
Rn

p(x, t)
(
H(x) + β−1 ln p(x, t)

)
dx, (13b)

they showed non-adiabatic entropy production σ(na) = −dF
dt ≡ dS

dt − β dU
dt ≥ 0

if the heat baths have a common temperature β−1. If not, then

σ(na) =
dS

dt
−

K∑
i=1

βiΦi, (13c)

where Φi is the mean rate of energy flow from the ith reservoir to the system:
dU
dt =

∑K
i=1 Φi. Furthermore, in a nonequilibrium stationary state, σ(na) =∑K′

i,j=1

(
βi − βj

)
Φj , where K ′ < K are linearly independent number of energy

fluxes.

One notices that the logical development of the mesoscopic NET in phase

space is more in line with Boltzmann’s mechanical theory of heat than with the
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top-down phenomenological approach described by van Kampen, as discussed in

the beginning of Sec. 3.

4. Mesoscopic stochastic NET and Hill’s cycle kinetics

Most of the mathematical presentations of the mesoscopic, stochastic nonequilib-

rium thermodynamics (stoch-NET) can be carried out in either discrete or contin-

uous state space. For simplicity, however, we consider a Markov dynamics with a

finite discrete state space S :

dpα(t)

dt
=

∑
β∈S

(
pβ(t)qβα − pα(t)qαβ

)
. (14)

We further assume that the Markov process is irreducible and qαβ = 0 if and only

if qβα = 0. With these assumptions, the Markov system has a unique, positive

stationary distribution {πα} that satisfies∑
β∈S

(
πβqβα − παqαβ

)
= 0, ∀α ∈ S ,

∑
α∈S

πα = 1. (15)

4.1. Stationary distribution generates an entropic force

Since mathematicians can prove the existence of the πα and its positivity, one can

introduce

Eα = − lnπα. (16)

This mathematical definition formalizes the notion of an “entropic” (statistical)

force that does not cause the motion mechanically, yet it is a thermodynamic force
precisely as articulated by Onsager. Such a force can do mechanical work, as has

been illustrated by the polymer dynamic theory of rubber elasticity. Of course, as

any thermodynamic concept, it can have many different mechanistic origin. Still,

as we shall show, recognizing this novel “law of force” leads to great insights and

consistency. How to measure it, e.g., whether such an entropic force is observable

is an entirely different matter. Many researchers have discussed such nonequilib-

rium steady state potential in the past, see [61–65].

With the energy given in (16), one can introduce generalized entropy and free

energy in a Markov System. We use the term “generalized” to emphasize that

these quantities exist independent of whether a mesoscopic system is in an equi-

librium or not, stationary or not. We assume the Markov dynamics has a unique

stationary (invariant) distribution. This means that there is a probability based

“force” pushing a system from low probability to high probability.
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4.2. Two mesoscopic laws and three nonnegative quantities

If the system has a probability distribution pα, then the mean internal energy and

entropy are

E =
∑
α∈S

pαEα, S = −
∑
α∈S

pα ln pα. (17a)

Their difference is the Helmholtz free energy

F
[{pα}] = E(t)− S(t) =

∑
α∈S

pα ln

(
pα
πα

)
. (17b)

It is easy to show that F ≥ 0.

Now following the similar steps ii) to iv) in Sec. 3.5, assuming pα(t) follows

the master equation in (14), we have
d

dt
F
[{pα(t)}] = Ein

[{pα(t)}]− ep
[{pα(t)}], (18a)

Ein

[{pα}] ≡ 1

2

∑
α,β∈S

(
pαqαβ − pβqβα

)
ln

(
παqαβ
πβqβα

)
, (18b)

ep
[{pα}] ≡ 1

2

∑
α,β∈S

(
pαqαβ − pβqβα

)
ln

(
pαqαβ
pβqβα

)
. (18c)

One can in fact prove that both Ein ≥ 0 and ep ≥ 0. The nonnegative Ein has also

been called adiabatic entropy production or house-keeping heat, the nonnegative

ep is called total entropy production rate.

Equation (18a) is interpreted as a mesoscopic free energy balance equation,

with Ein being the instantaneous energy input rate, a source term, and ep being

the instantaneous entropy production rate, a sink.

One can also prove
dF

dt
≤ 0. (19)

The nonnegative − d
dtF has also been called non-adiabatic entropy production or

free energy dissipation. Then Eq. (19) is like the Second Law of Thermodynamics.

This is a very old mathematics result on Markov processes, which has been re-

discovered many times [9, 66–70].

Equation (18) can be re-arranged into ep = − d
dtF + Ein, which offers a

different interpretation: The total entropy production ep consists of two parts:

− d
dtF ≥ 0 reflects Clausius and Boltzmann’s thesis of irreversibility, and Ein ≥ 0

reflects the existence of nonequilibrium steady state (NESS), which is central to

Nicolis and Prigogine’s dissipative structure [5].

Equations (18) and (19) are two laws of mesoscopic stochastic (Markov) dy-

namics. They consist of one equation (18) and three nonnegative quantities: F ,

Ein, − d
dtF ≥ 0. Then ep ≥ 0 follows.
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4.3. The significance of free energy balance equation

It is clear that the free energy balance equation (18) is simply an alternative expres-

sion of the celebrated entropy balance equation [5, 49] that lies at the foundation

of classical NET:

d

dt
S
[{pα(t)}] = ep

[{pα(t)}]+ Eex

[{pα(t)}], (20a)

Eex

[{pα}] = −Ein +
dE

dt
(20b)

=
1

2

∑
α,β∈S

(
pαqαβ − pβqβα

)
ln

(
qβα
qαβ

)
. (20c)

Therefore, for a system with qαβ = qβα, such as a microcanonical ensemble,

Eex ≡ 0 and entropy production is the same as entropy change. In general,

however, Eex does not have a definitive sign.

For systems that are in contact with external reservoir(s), it is well known from

classical thermodynamics that entropy is not an appropriate thermodynamics po-

tential; free energy is. For stoch-NET, the significant advantage of the free energy

balance equation in (18) over the entropy balance equation in (20) is obvious.

Since both Ein, ep ≥ 0, they can be definitively identified as the source and the

sink, respectively, for the free energy.

When a Markov system is detail balanced, e.g., παqαβ = πβqβα ∀α, β ∈ S ,

Ein ≡ 0 and Eex = dE
dt . Such a system is like a closed system which approaches

to an equilibrium steady state with ep = 0. The last term on the rhs of the entropy

balance equation (20a) can be moved to the lhs, and combined with dS
dt . This

yields precisely the free energy balance equation (18a)!

For systems without detailed balance, a nonequilibrium steady state has Ein =

ep �= 0. They correspond to open, driven systems with sustained transport, pow-

ered by a chemostatic environment.

Chemists have always known that free energy balance is different from me-

chanical energy conservation: since the former involves an entropic component.

People are taught to read the “calorie label” on food products in a supermarket; the

validity of this practice testifies the significance of a rigorous free energy balance
equation.
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4.4. Kinetic cycles and cycle kinetics

Steady state entropy production rate

essp =
∑

i>j∈S

(
Jss
ij − Jss

ji

)
ln

(
Jss
ij

Jss
ji

)

=
∑

c: all cycles

(
J+
c − J−c

)ss

ln

(
J+
c

J−c

)ss

=
∑

c: all cycles

(
J+
c − J−c

)ss

ln

(
qc1c2qc2c3 · · · qcκc1

qc1cκqcκcκ−1
· · · qc2c1

)
. (21)

In Eq. (21), the kinetic cycle c with κ steps consists of the sequence of states

{c1, c2, · · · , cκ, c1}. One should wonder what the purpose is to re-express the

NESS essp as in (21); it contains great many more terms since the number of possi-

ble cycles in a Markov graph is much more than the number of edges (transitions).

We note, however, that both Jss
ij = pssi qij and Jss

ji = pssj qji are functions of the

probabilities pssi and pssj . But (J+
c /J−c )ss is independent of any probability. En-

tropy production per cycle, also called cycle affinity, is the key to mesoscopic,

stochastic nonequilibrium thermodynamics! The (J+
c − J−c )ss is simply a kine-

matics term: It counts the numbers of different cycles the system passing through

per unit time. Recognizing this, it is immediately clear that one can also introduce

a fluctuating entropy production along a stochastic trajectory, counting stochasti-

cally completed cycles one at a time [71].

The cycle representation of entropy production in (21) was first proposed and

computationally demonstrated by Hill and Chen [71]. Later, Hill’s diagram ap-

proach was shown to be equivalent to a Markov jump process, for which Eq. (21)

can be proven mathematically [72, 73]. A trajectory-based stochastic entropy pro-

duction was introduced by Qian and Qian for discrete Markov processes as well

as continuous diffusion processes in 1985 [74].

4.5. Nonlinear force-flux relation

One of the significant results of mesoscopic, stoch-NET is a nonlinear force-flux

relationship: The net probability flux between states α and β is (Jα→β − Jβ→α),

and the chemical potential difference is Δμ = kBT ln(Jα→β/Jβ→α). Only when

Δμ � kBT , e.g., Jα→β ≈ Jβ→α, one has a linear relation

Jα→β − Jβ→α = Jβ→α

(
Jα→β

Jβ→α
− 1

)
= Jβ→α

(
e

Δμ
kBT − 1

)

≈ Jβ→α ×
(

Δμ

kBT

)
. (22)
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In fact, an exact nonlinear force-flux relationship exists:

Jα→β − Jβ→α =
(
Jα→β + Jβ→α

)
tanh

(
Δμ

2kBT

)
. (23)

4.6. Comparison with macroscopic NET

In comparison with the macroscopic NET [49], the present theory, stoc-NET, is

a theory based on free energy, not entropy per se. This is expected since the

Markov description represents a dynamical system with many degrees of freedom

collected under the assumption of “random effects”. It is a dynamic counterpart

of Gibbs’ canonical ensemble rather than microcanonical ensemble.

While the macro-NET uses local equilibrium assumption to introduce the en-

tropy function and secures Gibbs’ equation (6), the stoc-NET introduces entropy

function following Boltzmann’s and Shannon’s fundamental insights: It is a func-

tional of the probability distribution in the phase space. This approach allows one

to mathematically derive a mesoscopic entropy balance equation, and closely re-

lated free energy balance equation. Stoc-NET does not require a local equilibrium

assumption, though it assumes a Markov dynamics as an “equation of motion”

in a phase space. Recall that Boltzmann’s mechanical theory of heat assumes

Newton’s equation of motion [46].

One of the most significant differences between stoc-NET and macro-NET is

that one obtains self-contained mathematical expressions for the entropy flux and

entropy production rate in the former. One can further mathematically prove the

entropy production rate being nonnegative!

Finally, but not the least, the stoc-NET has an entire theory of fluctuating

entropy production along stochastic trajectories, e.g., fluctuation theorems and

Jarzynski–Crooks equalities, that provides fundamental characterizations of ther-

modynamics of small systems [75–77].

5. Further development and applications

5.1. Nonequilibrium steady state and dissipative structure

Intracellular biology can be roughly thought as a complex biochemical reaction

system carried out by enzymes. The cycle kinetics of enzymes in cellular bio-

chemistry defines equilibrium vs. nonequilibrium steady-state (NESS) as illus-

trated in Fig. 1.

Essentially all biochemical processes inside a living cells are cycle kinetics.

One well-known exception is the creatine phosphate shuttle carried out by crea-

tine kinase. According to stoc-NET, each and every kinetic cycle has to be driven
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Fig. 1. (a) Unimolecular reactions and (b) pseudo-unimolecular reactions with fixed concentrations

cD and cE for species D and E. One can map the nonlinear reaction on the right to the left with

ko2cD = k2 and ko−2cE = k−2. They are called pseudo-first-order rate constants. If cD and cE
are in their chemical equilibrium cE/cD = k1ko2k3/(k−1ko−2k−3), then k1k2k3 = k−1k−2k−3.

Furthermore, denoting γ = k1k2k3/(k−1k−2k−3), then kBT ln γ = μD − μE . When γ > 1,

there is a clockwise cycle flux; and when γ < 1, there is a counter-clockwise cycle flux.

by a non-zero chemical potential difference. Figure 2 are two widely known ex-

amples. A stationary state of an open chemical system, sustained by a chemostatic

chemical potential difference in its environment and continuously dissipates free

energy, epitomizes the notion of dissipative structure [5]. Rigorous mathematical

theory of nonequilibrium steady state (NESS) and its applications can be found

in [78–80].

5.2. Macroscopic limit: Gibbs’ chemical thermodynamics

One of the accomplishments of Boltzmann was to obtain the First Law, in the

form of Eq. (6), from Newton’s equation of motion. But it is not often that one

can rely on mathematics to derive a macroscopic law from microscopic dynamic

equations, as pointed out by van Kampen [45]:

“Of course, the macroscopic equations cannot actually be derived from the

microscopic ones. In practice they are pieced together from general principles

and experiences. The stochastic mesoscopic description must be obtained in the

same way. This semi-phenomenological approach is remarkably successful ...”

Therefore, it is extremely satisfying when one sees that it is possible to derive

Gibbs’ macroscopic, isothermal chemical thermodynamics from the mesoscopic

chemical kinetic descriptions, e.g., Delbrück–Gillespie process [81, 82].
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Fig. 2. (a) In cellular metabolism, almost all enzymatic reactions are nearly irreversible. This implies

the chemical potential of the substate S is significantly greater than that of the product P . This dictates

the enzyme turnover prefers E → ES → EP → E rather than other way around. (b) In cellular

signaling pathways, phosphorylation-dephosphorylation cycle is one of the most widely employed

biochemical mechanism for regulating cell informations. The cycle is driven by ATP hydrolysis.

5.3. Applications: biochemical dynamics in single cells

Both the intracellular genetic regulatory network of self-regulating genes

and intracellular signaling networks of phosphorylation-dephosphorylation with

substrate-activated kinase or GTPase cycle with substrate-activated GEF (guanine

nucleotide exchange factor) are kinetic isomorphic, see Fig. 14 of [80] and Fig. 1

in [83] for illustrations. In fact, they all can be conceptually represented by the

following kinetic scheme involving autocatalysis:

Y + χX
α1

GGGGBF GGGG

α2

(χ+ 1)X, X
β1

GGGGBF GGGG

β2

Y. (24)

For χ = 2 this system is closely related to the well-known Schlögl model in chem-

ical kinetic literature. The macroscopic kinetics follows the nonlinear differential

equation

dx

dt
= −dy

dt
= α1x

χy − α2x
χ+1 − β1x+ β2y, (25)

where x(t) and y(t) are the concentrations of X and Y . Given initial values

x(0) = x0 and y(0) = 0, y(t) = x0 − x(t). Non-dimensionalization of the ODE

yields

du

dτ
= θuχ

(
1− u

)− θuχ+1

μγ
− (

1 + μ
)
u+ μ, (26)
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where θ =
α1x

χ
0

β1
, μ = β2

β1
, and γ = α1β1

α2β2
. The steady state concentration of X ,

when χ = 0, is [84]

uss =
θ + μ

θ + 1 + μ+ θ/(μγ)
, (27)

which is a monotonically increasing function of θ, the parameter representing

biochemical activation. When μ � 1 and μγ  1, it is nearly θ
1+θ , the expected

hyperbolic curve [20]. However, when γ = 1, uss = μ
μ+1 is actually independent

of θ.

For χ = 1, the steady-state is [83]

uss =
θ − 1− μ+

√
(θ − 1− μ)2 + 4μθ [1 + 1/(μγ)]

2θ [1 + 1/(μγ)]
. (28)

In the very special case of μ = 0 and μγ = ∞, uss(θ) undergoes a transcritical

bifurcation at θ = 1. But the transcritical bifurcation is not robust: For μ > 0, the

uss(θ) in (28) is a smooth, monotonic increasing function of θ.

For χ = 2, the system exhibits nonlinear bistability with saddle-node bifurca-

tion. When μ = 0 and μγ = ∞,

uss
1 = 0 and uss

2,3 =
1±√

θ2 − 4θ

2θ
, (29)

which exhibits saddle-node bifurcation at θ∗ = 4. Saddle-node bifurcation is

robust.

For biochemical kinetics in a single cell, instead of considering the concentra-

tion x(t), one is interested in the number of X molecules at time t, nX(t), and

biochemical reactions occur stochastically one at a time. The Delbrück–Gillespie

process theory then is the appropriate mathematical representation of single cell

biochemical kinetics and many other complex dynamics, just as differential equa-

tion is the appropriate mathematical representation of macroscopic chemical ki-

netics. The probability pk(t) = Pr
{
nX(t) = k

}
satisfies the chemical master

equation

d

dt
pk(t) = vk−1pk−1(t)−

(
vk + wk

)
pk(t) + wk+1pk+1(t), (30a)

in which

vk =
α1k(k − 1) · · · (k − χ+ 1)

(
n0 − k

)
V χ

+ β2

(
n0 − k

)
, (30b)

wk =
α2k(k − 1) · · · (k − χ)

V χ
+ β1k, (30c)
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where n0 is the total number of X and Y molecules together. The stationary

probability distribution for the nX is

pssk = A
k∏

�=1

(
v�−1

w�

)
, (31)

in which normalization factor:

A =

[
1 +

n0∑
k=1

k∏
�=1

(
v�−1

w�

)]−1

. (32)

For χ = 2, it is easy to show that pssk has two peaks located precisely at any �∗

where v�∗−1 = w�∗ . This corresponds to the x∗ where v(x∗) = w(x∗), introduced

below.

Noting that v� and w� are both functions of the size of a cell V , their macro-

scopic limits are

v(z) = lim
V→∞

vzV
V

, w(z) = lim
V→∞

wzV

V
. (33)

In the macroscopic limit of V, n0 → ∞, n0

V = x0, the stochastic process
nX(t)

V becomes a smooth function of time x̂(t), which is the solution to the ODE
d
dtx(t) = v(x) − w(x). More precisely, the probability distribution V −1pxV (t)

approaches to a Dirac-δ function δ
(
x − x̂(t)

)
when V tends to infinity. Further-

more, this transition from mesoscopic to macroscopic descriptions can be further

quantified by a function ϕ(x, t) ≥ 0:

− lim
V→∞

ln pxV (t)

V
= ϕ(x, t), or V −1pxV (t) � e−V ϕ(x,t). (34)

With each fixed t, the global minimum of function ϕ(x, t) is when x = x̂(t):

ϕ(x̂(t), t) = 0. Similarly, the steady state probability distribution in (31) has

V −1pssxV � e−V ϕss(x).

In connection to the deterministic dynamics x̂(t), the emergent function

ϕss(x) has a very important property, which is actually a mathematical conse-

quence of the inequality in Eq. (19): d
dtϕ

ss
(
x̂(t)

) ≤ 0. Therefore, the function

ϕss(x) can be legitimately call a nonequilibrium free energy function, of a land-

scape.

There is a subtle but fundamental distinction: the landscape for a molecule is

given a priori, it is considered as the cause of the dynamics [15]. The “landscape”

for a cell is itself a consequence of cellular nonlinear, stochastic dynamics —

rigorously defined via the large deviation theory when V → ∞. It is itself an

emergent property [85].
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5.4. Complex systems and symmetry breaking

The uss given in Eq. (28), which represents the level of X-activity in the nonlin-

ear, driven “biochemical” kinetic system (24), is not only a function of the level

of “activation signal” θ, but also a function of the amount of chemical potential

difference, ln γ, that keeps the system away from chemical equilibrium. As we

have already shown, when γ = 1, the uss is unresponsive to θ whatsoever: “No

dissipation, no signaling transduction” [84]. More quantitatively, Fig. 3 shows

multiple uss as functions of the level of chemical potential driving force, ln γ, for

χ = 2.

uss

Fig. 3. Nonlinear, nonequilibrium steady state bifurcation gives rise to a far-from-equilibrium branch

(red) in the “phase diagram”. It represents a state of the open chemical system that is distinct from the

“inanimate branch” (blue) that is a near-equilibrium continuation of the unique chemical equilibrium

at ln γ = 0. The bifurcation occurs at ln γ = 4.13. After ln γ > 8, the “dissipative” red steady state

is well separated from the blue steady state by the unstable green steady state. Steady state solutions

to Eq. (26) are the roots of γ = (θuχ+1/μ)[θuχ(1 − u) − (1 + μ)u + μ]−1. Parameter values

μ = 0.01, θ = 10, and χ = 2 are used.

One could identify the red branch in Fig. 3 as a “living matter” of the driven

chemical reaction system, while consider the blue branch, which is a continuation

of the unique equilibrium state at γ = 1 with uss remains near its equilibrium

value, as an still inanimate matter yet under nonequilibrium condition.
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There are many schools of thoughts on complexity. In the writing of con-

densed matter physicists [13–16], dynamic symmetry breaking and protected prop-
erties or rigidity, or break-down of ergodicity,c is a key ingredient. In most of

physics of equilibrium matter, broken symmetries are few in number; but outside

physics, with nonlinear dynamics in an nonequilibrium systems, they are every-

where, as illustrated by the example in Sec. 5.3.

In the case of nonequilibrium systems, the very nature of multi-stability, and

the locations of the “attractors” are themselves emergent phenomena, in contrast

to inert matter where the multiple attractors are dictated by symmetry in the law

of motions. In fact, Hopfield’s “dynamic symmetry breaking” can be identified in

a NESS with substantial non-zero transport fluxes that break the detailed balance

and time reversal symmetry. Indeed, “there is a sharp and accurate analogy be-

tween the breaking-up of this [high energy world] ultimate symmetry to give the

complex spectrum of interactions and particles we actually know and the more

visible complexities” [86]. “At some point, we have to stop talking about decreas-

ing symmetry and start calling it increasing complication” [13], or complexity.

One of the important ideas in phase transition is the order parameter, first pro-

posed by L. D. Landau. For nonlinear system with bistability, there is necessarily

a saddle pointd and associated with which there is a unstable manifold that con-

nects the two stable states. For such a system undergoing saddle-node bifurcation,

there is necessarily a hidden pitch-fork bifurcation [48].

The forgoing discussion seems to be consistent with the general tenet of this

review, and the particular result in Fig. 3. Emergent states in dissipative sys-

tems driven far from equilibrium, e.g., the red branch in Fig. 3, indeed arise from

symmetry breaking, if the latter is understood in a broad sense as in [48]. An-

derson and Stein also recognized autocatalysis, an idea that goes even earlier to

A. M. Turing, as a possible mechanism for the origin of life. But they were cau-

tious and asked the poignant question “why should dynamic instability be the

general rule in all dissipative systems”.

Anderson and Stein [86] also pointed out the overemphasis on more complex

dynamics behavior, such as those in convection cells or vortices in turbulence,

in complexity research. They pointed out that these behaviors in general are

cErgodicity means a dynamical system goes to all accessible part of the phase space; rigidity means

this motion is being restricted to only a part of this space for a significant amount of time. In a

mathematically more careful treatment, this happens if one takes the limit of N → ∞ followed by

t→∞.
dThe term saddle has two very different meanings: it describes a point in a landscape, and it also

describes a point in a vector field. Fortunately, according to the Freidlin–Wentzell theory, these two

concepts can be unified when the noise to a nonlinear dynamical system is sufficiently small [35, 37],

or similarly a system is sufficiently large.
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unstable and transitory. Our Fig. 3 indicates that even a low dimensional fixed

point, which is much better understood, can and should be considered as a “dis-

sipative structure”: On a mesoscopic scale, it has a time irreversible, complex

temporal dynamics in its stochastic stationary fluctuations [20, 87].

Fluctuations favor ergodicity or “symmetry”, and potential energy or force,

on the other hand, prefer special arrangements. One of the profound implications

of the notion of an “entropic force” [89] is that detailed, fast dynamics generates

probability, which in turn can be formalized as an “emegent force” on a differ-

ent time scale. Therefore, the entropic force and its potential, or landscape, are

themselves emergent properties of a complex dynamics [85]. This is the thermo-

dynamic force of Onsager [88].
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