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Our topic is the relationship between dynamical systems and optimization.
This is a venerable, vast area in mathematics, counting among its many his-
torical threads the study of gradient flow and the variational perspective on
mechanics. We aim to build some new connections in this general area, study-
ing aspects of gradient-based optimization from a continuous-time, variational
point of view. We go beyond classical gradient flow to focus on second-order
dynamics, aiming to show the relevance of such dynamics to optimization algo-
rithms that not only converge, but converge quickly.

Although our focus is theoretical, it is important to motivate the work by
considering the applied context from which it has emerged. Modern statisti-
cal data analysis often involves very large data sets and very large parameter
spaces, so that computational efficiency is of paramount importance in prac-
tical applications. In such settings, the notion of efficiency is more stringent
than that of classical computational complexity theory, where the distinction
between polynomial complexity and exponential complexity has been a useful
focus. In large-scale data analysis, algorithms need to be not merely polyno-
mial, but linear, or nearly linear, in relevant problem parameters. Optimization
theory has provided both practical and theoretical support for this endeavor. It
has supplied computationally-efficient algorithms, as well as analysis tools that
allow rates of convergence to be determined as explicit functions of problem
parameters. The dictum of efficiency has led to a focus on algorithms that are
based principally on gradients of objective functions, or on estimates of gradi-
ents, given that Hessians incur quadratic or cubic complexity in the dimension
of the configuration space (Bottou, 2010; Nesterov, 2012).

More broadly, the blending of inferential and computational ideas is one
of the major intellectual trends of the current century—one currently referred
to by terms such as “data science” and “machine learning.” It is a trend that
inspires the search for new mathematical concepts that allow computational
and inferential desiderata to be studied jointly. For example, one would like to
impose runtime budgets on data-analysis algorithms as a function of statistical
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quantities such as risk, the number of data points and the model complexity,
while also taking into account computational resource constraints such as num-
ber of processors, the communication bandwidth and the degree of asynchrony.
Fundamental understanding of such tradeoffs seems likely to emerge through
the development of lower bounds—by establishing notions of “best” one can
strip away inessentials and reveal essential relationships. Here too optimiza-
tion theory has been important. In a seminal line of research beginning in
the 1970’s, Nemirovskii, Nesterov and others developed a complexity theory of
optimization, establishing lower bounds on rates of convergence and discover-
ing algorithms that achieve those lower bounds (Nemirovskii and Yudin, 1983;
Nesterov, 1998). Moreover, the model of complexity was a relative one—an
“oracle” is specified and algorithms can only use information that is available to
the oracle. For example, it is possible to consider oracles that have access only
to function values and gradients. Thus the dictum of practical computational
efficiency can be imposed in a natural way in the theory.

Our focus is the class of optimization algorithms known as “accelerated algo-
rithms” (Nesterov, 1998). These algorithms often attain the oracle lower-bound
rates, although it is something of a mystery why they do so. We will argue that
some of mystery is due to the historical focus in optimization on discrete-time
algorithms and analyses. In optimization, the distinction between “continuous
optimization” and “discrete optimization” refers to the configuration (“spatial”)
variables. By way of contrast, our discussion will focus on continuous time. In
continuous time we can give acceleration a mathematical meaning as a differen-
tial concept, as a change of speed along a curve. And we can pose the question
of “what is the fastest rate?” as a problem in variational analysis; in essence
treating the problem of finding the “optimal way to optimize” for a given oracle
itself as a formal problem of optimization. Such a variational perspective also
has the advantage of being generative—we can derive algorithms that achieve
fast rates rather than requiring an analysis to establish a fast rate for a specific
algorithm that is derived in an adhoc manner.

Working in continuous time forces us to face the problem of discretizing a
continuous-time dynamical system, so as to derive an algorithm that can be
implemented on a digital computer. Interestingly, we will find that symplectic
integrators, which are widely used for integrating dynamics obtained from vari-
ational or Hamiltonian perspectives, are relevant in the optimization setting.
Symplectic integration preserves the continuous symmetries of the underlying
dynamical system, and this stabilizes the dynamics, allowing step sizes to be
larger. Thus algorithms obtained from symplectic integration can move more
quickly through a configuration space; this gives a geometric meaning to “ac-
celeration.”

It is also of interest to consider continuous-time stochastic dynamics that
are in some sense “accelerated.” The simplest form of gradient-based stochas-
tic differential equation is the Langevin diffusion. The particular variant that
has been studied in the literature is an overdamped diffusion that is an analog
of gradient descent. We will see that by considering instead an underdamped
Langevin diffusion, we will obtain a method that is more akin to accelerated
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gradient descent, and which in fact provably yields a faster rate than the over-
damped diffusion.

The presentation here is based on joint work with co-authors Andre Wibisono,
Ashia Wilson, Michael Betancourt, Chi Jin, Praneeth Netrapalli, Rong Ge,
Sham Kakade, Niladri Chatterji and Xiang Cheng, as well as other co-authors
who will be acknowledged in specific sections.

1 Lagrangian and Hamiltonian Formulations of
Accelerated Gradient Descent

Given a continuously differentiable function f on an open Euclidean domain X ,
and given an initial point x0 ∈ X , gradient descent is defined as the following
discrete dynamical system:

xk+1 = xk − η∇f(xk), (1)

where η > 0 is a step size parameter.
When f is convex, it is known that gradient descent converges to the global

optimum x⋆, assumed unique for simplicity, at a rate of O(1/k) (Nesterov, 1998).
This means that after k iterations, the function value f(xk) is guaranteed to be
within a constant times 1/k of the optimum value f⋆ = f(x⋆). This is a worst-
case rate, meaning that gradient descent converges as least as fast as O(1/k)
across the function class of convex functions. The constant hidden in the O(·)
notation is an explicit function of a complexity measure such as a Lipschitz
constant for the gradient.

In the 1980’s, a complexity theory of optimization was developed in which
rates such as O(1/k) could be compared to lower bounds for particular problem
classes (Nemirovskii and Yudin, 1983). For example, an oracle model appro-
priate for gradient-based optimization might consider all algorithms that have
access to sequences of gradients of a function, and whose iterates must lie in
the linear span of the current gradient and all previous gradients. This model
encompasses, for example, gradient descent, but other algorithms are allowed
as well. Nemirovskii and Yudin (1983) were able to prove, by construction of a
worst-case function, that no algorithm in this class can converge at a rate faster
than O(1/k2). This lower bound is better than gradient descent, and it holds
open the promise that some gradient-based algorithm can beat gradient descent
across the family of convex functions. That promise was realized by Nesterov
(1983), who presented the following algorithm, known as accelerated gradient
descent:

yk+1 = xk − η∇f(xk)

xk+1 = (1 + λk)yk+1 − λkyk, (2)

and proved that the algorithm converges at rate O(1/k2) for convex functions
f . Here λk is an explicit function of the other problem parameters. We see that
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the acceleration involves two successive gradients, and the resulting dynamics
are richer than those of gradient descent. In particular, accelerated gradient
descent is not a descent algorithm—the function values can oscillate.

Nesterov’s basic algorithm can be presented in other ways; in particular, we
will also use a three-sequence version:

xk = yk + λkvk

yk+1 = xk − η∇f(xk)

vk+1 = yk+1 − yk. (3)

We note in passing that in both this version and the two-sequence version, the
parameter λk is time-varying for some problem formulations and constant for
others.

After Nesterov’s seminal paper in 1983, the subsequent three decades have
seen the development of a variety of accelerated algorithms in a wide variety
of other problem settings. These include mirror descent, composite objective
functions, non-Euclidean geometries, stochastic variants and higher-order gra-
dient descent. Rates of convergence have been obtained for these algorithms,
and these rates often achieve oracle lower bounds. Overall, acceleration has
been one of the most productive ideas in modern optimization theory. See Nes-
terov (1998) for a basic introduction, and Bubeck et al. (2015); Allen-Zhu and
Orecchia (2014) for examples of recent progress.

And yet the basic acceleration phenomenon has remained somewhat of a
mystery. Its derivation and its analysis are often obtained only after lengthy
algebraic manipulations, with clever but somewhat opaque upper bounds needed
at critical junctures.

In Wibisono et al. (2016), we argue that this mystery is due in part to the
discrete-time formalism that is generally used to derive and study gradient-based
optimization algorithms. Indeed, the notion of “acceleration” seems ill-defined
in a discrete-time framework; what does it mean to move more quickly along
a sequence of discrete points? Such a notion seems to require an embedding
in an underlying flow of time, such that acceleration can be viewed as a diffeo-
morphism. Moreover, if accelerated optimization algorithms are in some sense
optimal, there must be something special about the curve that they follow in the
configuration space, not merely the speed at which they move. Such a separate
characterization of curve and speed also seem to require continuous time.

Wibisono et al. (2016) address these issues via a variational framework that
aims to capture the phenomenon of acceleration in some generality. We re-
view this framework in the remainder of this section, discussing the Lagrangian
formulation that captures acceleration in continuous time, showing how this for-
mulation gives rise to a family of differential equations whose convergence rates
are the continuous-time counterpart of the discrete-time oracle rates. We high-
light the problem of the numerical integration of these differential equations,
setting up the symplectic integration approach that we discuss in Section 2.

We consider the general non-Euclidean setting in which the space X is en-
dowed with a distance-generating function h : X → R that is convex and essen-
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tially smooth (i.e., h is continuously differentiable in X , and ∥∇h(x)∥∗ → ∞
as ∥x∥ → ∞). The function h can be used to define a measure of distance in X
via its Bregman divergence:

Dh(y,x) = h(y)− h(x)− ⟨∇h(x),y − x⟩. (4)

The Euclidean setting is obtained when h(x) = 1
2∥x∥

2.
We use the Bregman divergence to construct a Bregman kinetic energy for

a dynamical system. We do this by taking the Bregman divergence between a
point x and its translation in the direction of the velocity v by a time-varying
magnitude, e−αt :

K(x,v, t) := Dh(x+ e−αtv,x). (5)

Using the definition in Eq. (4), we see that this kinetic energy can be interpreted
as comparison between the amount that h changes under a finite translation,
h(x+ e−αtv)− h(x), versus an infinitesimal translation, e−αt⟨∇h(x),v⟩.

We now define a time-dependent potential energy, U(x):

U(x, t) := eβtf(x), (6)

and we subtract the potential energy from the kinetic energy to obtain the
Bregman Lagrangian:

L(x,v, t) =:= eαt+γt(K(x,v, t)− U(x, t))

= eαt+γt(Dh(x+ e−αtv,x)− eβtf(x)). (7)

In this equation, the time-dependent factors αt, βt and γt are algorithmic degrees
of freedom that allow the Bregman-Lagrangian framework to encompass a range
of different algorithms.

Although αt, βt and γt can be set independently in principle, we define a set
of ideal scaling conditions that reduce these three degrees of freedom to a single
functional degree of freedom:

β̇t ≤ eαt

γ̇t = eαt . (8)

Wibisono et al. (2016) show that these conditions are needed to obtain differen-
tial equations whose rates of convergence are the optimal rates; see Theorem 1
below.

Given the Bregman Lagrangian, we use standard calculus of variations to
obtain a differential equation whose solution is the path that optimizes the time-
integrated Bregman Lagrangian. In particular, we form the Euler-Lagrange
equations:

d

dt

{
∂L
∂v

(xt, ẋt, t)

}
− ∂L

∂x
(xt, ẋt, t) = 0, (9)
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a computation which is easily done based on Eq. (7). Using the ideal scaling
conditions in Eq. (8), the result simplifies to the following master differential
equation:

ẍt + (eαt − α̇t)ẋt + e2αt+βt

[
∇2h(xt + e−αt ẋt)

]−1

∇f(xt) = 0. (10)

We see that the equation is second order and non-homogeneous. Moreover,
the gradient ∇f(xt) appears as a force, modified by geometric terms associated
with the Bregman distance-generating function h. As we will discuss below, this
equation is a general form of Nesterov acceleration in continuous time.

It is straightforward to obtain a convergence rate for the master differential
equation. We define the following Lyapunov function:

Et = Dh

(
x⋆, xt + e−αt ẋt

)
+ eβt(f(xt)− f⋆)). (11)

Taking a first derivative with respect to time, and asking that this derivative
be less than or equal to zero, we immediately obtain a convergence rate, as
documented in the following theorem, whose proof can be found in Wibisono
et al. (2016).

Theorem 1. If the ideal scaling in Eq. (8) holds, then solutions to the Euler-
Lagrange equation Eq. (10) satisfy

f(xt)− f⋆ ≤ O(e−βt).

For further explorations of Lyapunov-based analysis of accelerated gradient
methods, see Wilson et al. (2016).

Wibisono et al. (2016) studied a subfamily of Bregman Lagrangians with the
following choice of parameters, indexed by a parameter p > 0:

αt = log p− log t

βt = p log t+ logC

γt = p log t, (12)

where C > 0 is a constant. This choice of parameters satisfies the ideal scaling
condition in Eq. (8). The Euler-Lagrange equation, Eq. (10), reduces in this
case to:

ẍt +
p+ 1

t
ẋt + Cp2tp−2

[
∇2h

(
xt +

t

p
ẋt

)]−1

∇f(xt) = 0, (13)

and, by Theorem 1, it has an O(1/tp) rate of convergence.
The case p = 2 of the Eq. (13) is the continuous-time limit of Nesterov’s ac-

celerated mirror descent (Krichene et al., 2015), the case p = 3 is the continuous-
time limit of Nesterov’s accelerated cubic-regularized Newton’s method (Nes-
terov and Polyak, 2006). In the Euclidean case, when the Hessian ∇2h is the
identity matrix, we recover the following differential equation:

ẍt +
3

t
ẋt +∇f(xt) = 0, (14)
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which was first derived by Su et al. (2016) as the continuous-time limit of the
basic Nesterov accelerated gradient descent algorithm in Eq. (2).

The Bregman Lagrangian has several mathematical properties that give sig-
nificant insight into aspects of the acceleration phenomenon. For example, the
Bregman Lagrangian is closed under time dilation. This means that if we take
an Euler-Lagrange curve of a Bregman Lagrangian and reparameterize time so
that we travel the curve at a different speed, then the resulting curve is also
the Euler-Lagrange curve of another Bregman Lagrangian, with appropriately
modified parameters. Thus, the entire family of accelerated methods correspond
to a single curve in spacetime and can be obtained by speeding up (or slowing
down) any single curve. As suggested earlier, the Bregman Lagrangian frame-
work permits us to separate out the consideration of the optimal curve from
optimal speed of movement along that curve.

Finally, we turn to a core problem—how to discretize the master differential
equation so that it can be solved numerically on a digital computer. Wibisono
et al. (2016) showed that naive discretizations can fail to yield stable discrete-
time dynamical systems, or fail to preserve the fast oracle rates of the underlying
continuous system. Motivated by the three-sequence form of Nesterov acceler-
ation (see Eq. (3)), they derived the following algorithm, in the case of the
logarithmic parameterization shown in Eq. (12):

xk+1 =
p

k + p
zk +

k

k + p
yk

yk = argmin
y∈X

[
fp−1(y;xk) +

N

ϵp p
||y − xk||p

]
zk = argmin

z∈X

[
C pk(p−1) ⟨∇f(yk), z⟩+

1

ϵp
Dh(z, zk−1)

]
. (15)

Here fp−1(y;xk) is the order-p Taylor expansion of the objective function around
xk and N and C are scaling coefficients and ϵ is a step size. Although Wibisono
et al. (2016) were able to prove that this discretization is stable and achieves
the oracle rate of O(1/kp), the discretization is heuristic and does not flow
natural from the dynamical-systems framework. In the next section, we revisit
the discretization issue from the point of view of symplectic integration.

2 A Symplectic Perspective on Acceleration
Symplectic integration is a general for the discretization of differential equa-
tions that preserves various of the continuous symmetries of the dynamical
system (Hairer et al., 2006). In the case of differential equations obtained from
mechanics, these symmetries include physically-meaningful first integrals such
as energy and momentum. Symplectic integrators exactly conserve these quan-
tities even if the dynamical flow is only approximated. In addition to the appeal
of this result from the point of view of physical conservation laws, the preser-
vation of continuous symmetries means that symplectic integrators tend to be
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Figure 1: (a) When appropriately tuned, both the leapfrog integrator and the
three-sequence Nesterov algorithm simulate the same latent Bregman dynamics
and hence achieve similar convergence rates, here approximately O(k−2.95). (b)
Given a larger step size, the symplectic integrator remains stable and thus con-
verges more quickly, whereas the three-sequence Nesterov algorithm becomes
unstable.
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more stable than other integration schemes, such that it is possible to use larger
step sizes in the discrete-time system. It is this latter fact that suggests a role
for symplectic integrators in the integration of the differential equations asso-
ciated with accelerated optimization methods. This idea has been pursued in
recent work by Betancourt et al. (2018), whose results we review in this section.

While symplectic integrators can be obtained from a Lagrangian framework,
they are most naturally obtained from a Hamiltonian framework. We thus begin
by transforming the Bregman Lagrangian into a Bregman Hamiltonian. This
is readily done via a Legendre transform, as detailed in Wibisono et al. (2016)
and Betancourt et al. (2018). The resulting Hamiltonian is as follows:

H(x, r, t) = eα(t)+γ(t)

(
Dh∗(e−γ(t)r+

∂h

∂x
(r),

∂h

∂x
(x)) + eβ(t)f(x)

)
, (16)

where
Dh∗(r, s) = h∗(r)− h∗(s)− ∂h∗

∂r
(s) · (r− s),

and where h∗ is the Fenchel conjugate:

h∗(r) =
v∈TX

sup (⟨r,v⟩ − h(v)) .

Given the Bregman Hamiltonian in Eq. (16), Betancourt et al. (2018) fol-
low a standard sequence of steps to obtain a symplectic integrator. First, the
Bregman Hamiltonian is time-varying, and it is thus lifted into a time-invariant
Hamiltonian on an augmented configuration space that includes time as an
explicit variable and includes a conjugate energy variable in the phase space.
Second, the Hamiltonian is split into a set of component Hamiltonians, each of
which can be solved analytically (or nearly so via simple numerical methods).
Third, the component dynamics are composed symmetrically to form the full
dynamics. In particular, Betancourt et al. (2018) illustrate how to form a sym-
metric leapfrog integrator (a particular kind of symplectic integrator) for the
Bregman Hamiltonian. They prove that the error between this integrator and
the true dynamics is of order O(ϵ2), where ϵ is the step size in the discretization.

Betancourt et al. (2018) also present empirical results for a quadratic objec-
tive function, f(x) = ⟨Σ−1x, x⟩, on a 50-dimensional Euclidean space, where

Σij = ρ|i−j|,

and ρ = 0.9. This experiment was carried out in the setting of Eq. (12), for
various choices of p, C and N . Representative results are shown in Figure 1(a),
which compare the leapfrog integrator with the three-sequence version of Nes-
terov acceleration from Eq. (15). Here we see that both approaches yield sta-
ble, oscillatory dynamics whose asymptotic convergence rate is approximately
O(k−2.95). Moreover, as shown in Figure 1(b), the symplectic integrator remains
stable when a larger step size is chosen, whereas the three-sequence Nesterov
algorithm becomes unstable.
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Figure 2: (a) By incorporating gradient flow into the leapfrog integration of the
Bregman Hamiltonian dynamics we recover the same asymptotic exponential
convergence near the minimum of the objective exhibited by the dynamical
Nesterov algorithm. (b) These modified Hamiltonian dynamics remain stable
even as we increase the step size, allowing for more efficient computation and
the advantageous asymptotic behavior.
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Interestingly, however, while the initial rate is the same, the three-sequence
algorithm exhibits exponential convergence near the optimum. This behavior
does not hold in general (e.g., Betancourt et al. (2018) show that it does not
hold for quartic functions), but it is nonetheless an interesting feature of the
three-sequence method in the case of quadratic objectives. Betancourt et al.
(2018) show that it arises from an implicit gradient flow that is a side effect
of the three-sequence discretization. Moreover, they note that it is possible
to mimic this flow within the symplectic integrator. When this is done the
results for the quadratic objective are as shown in Figure 2(a). We see that
a symplectic integrator that incorporates gradient flow and the three-sequence
integrator yield convergence profiles that are essentially equivalent in this case.

But it is also true that the symplectic approach is topologically more stable
than the three-sequence method, a fact which is revealed if one chooses a more
aggressive step size. This is exhibited in Figure 2(b), where the symplectic
integrator converges while the three-sequence Nesterov method diverges when
the step size is increased.

In summary, this section has exhibited a connection between symplectic
integration and the acceleration phenomenon in optimization. When the latter
is construed as a continuous-time phenomenon, symplectic integration appears
to provide an effective and flexible way to obtain discrete-time approximations.
Much remains to be done, however, to tighten this link. In particular, we
would like to obtain necessary and sufficient conditions for stable integrators
that achieve oracle rates, and it is not yet clear what role symplectic geometry
will play in uncovering those conditions.

3 Acceleration and the Escape from Saddle Points
in Nonconvex Optimization

In this section we turn to nonconvex optimization. Although the general non-
convex setting harbors many intractable problems about which little can be
said regarding computational or statistical efficiency, it turns out that for a
wide range of problems in statistical learning, there is sufficient mathemati-
cal structure present in the nonconvex setting that useful mathematical results
can be obtained. Indeed, in many cases the ideas and algorithms from convex
optimization—suitably modified—can be carried over to the nonconvex setting.
In particular, for gradient-based optimization, the same algorithms that per-
form well in the convex setting also tend to yield favorable performance in the
nonconvex setting. In this sense, convex optimization has served as a laboratory
for nonconvex optimization, in addition to having many natural applications of
its own.

A useful first foothold on nonconvex optimization is obtained by consid-
ering the criterion of first-order stationarity. Given a differentiable function
f : X → R, on some well-behaved Euclidean domain X of dimension d, we
define first-order stationary points to be those points x ∈ X where the gradient
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vanishes: ∥∇f(x)∥ = 0. Although first-order stationary points can in general
be associated with many kinds of topological singularity, for many statistical
learning problems it suffices to consider the categorization into points that are
global minima, local minima, local maxima and saddle points. Of these, local
maxima are rarely viewed as problematic—simple modifications of gradient de-
scent, such as stochastic perturbation, can suffice to ensure that algorithms do
not get stuck at local maxima. Local minima have long been viewed as the core
concern in nonconvex optimization for statistical learning problems. Recent
work has shown, however, that in a wide range of nonconvex statistical learn-
ing problems, local minima are provably absent, or, in empirical studies, even
when local minima are present they do not appear to be discovered by gradient-
based algorithms. Such results have been obtained for smooth semidefinite
programs (Boumal et al., 2016), matrix completion (Ge et al., 2016), synchro-
nization and MaxCut (Bandeira et al., 2016; Mei et al., 2017), multi-layer neural
networks (Choromanska et al., 2014; Kawaguchi, 2016), matrix sensing (Bho-
janapalli et al., 2016) and robust principal components analysis (Ge et al., 2017).

As for global minima, while they are unambiguously the desirable end states
for optimization algorithms, when there are multiple global minima it will gen-
erally be necessary to impose additional criteria (e.g., statistical) to single out
preferable global minima, and to ask that an optimization algorithm respect
this preference. We will not discuss these additional criteria here.

It remains to consider saddle points. Naively one might view these as akin
to local maxima, in the sense that it is plausible that a simple perturbation
could suffice for a gradient-based algorithm to roll down a direction of negative
curvature. Such an argument has support from a recent theoretical result: Lee
et al. (2016) have shown that under regularity conditions gradient descent will
converge asymptotically and almost surely to a (local) minimum and thus avoid
saddle points. In particular, a gradient-based algorithm that is initialized at a
random point in X will avoid any and all saddle points in the asymptotic limit.
While this result helps to emphasize the strength of gradient descent, it is of
limited practical in that it is asymptotic (providing no rate of convergence);
moreover, critically, it does not provide any insight into the rate of escape of
saddle points as a function of dimension. While under suitable regularity all
directions are escape directions for local maxima, it could be that only one
direction is an escape direction for a saddle point. The computational burden
of finding that direction could be significant; perhaps exponential in dimension.
Given that modern statistical learning problems can involve many hundreds of
thousands or millions of dimensions, such a burden would be fatal.

We thus focus our discussion on saddle points. To tie the discussion here to
the discussion of the previous section, we take a dynamical systems perspective
and study the extent to which acceleration (second-order dynamics) is able
to improve the rate of escape of saddle points in gradient-based optimization.
Intuitively, there is a narrow region around a saddle point in which the flow
is principally directed towards the saddle point, and it seems plausible that
an accelerated algorithm is able to bypass such a region more effectively than
a non-accelerated algorithm. Whether this is actually true has been an open
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question in the literature.
To understand how dynamics and geometry interact in the neighborhood

of saddle points, it is necessary to go beyond first-order stationarity, which
lumps saddle points together with local minima, and to impose a condition that
excludes saddle points. We define a second-order stationary point to be a point
x ∈ X such that ∥∇f(x)∥ = 0 and λmin(∇2f(x)) ≥ 0. This definition includes
local minima, but it also allows degenerate saddle points, in which the smallest
eigenvalue of the Hessian is zero, and so we also define a strict saddle point to
be a point x ∈ X for which λmin(∇2f(x)) < 0. These two definitions jointly
allow us to separate local minima from most saddle points. In particular, if
all saddle points are strict, then an algorithm that converges to a second-order
stationary point necessarily converges to a local minimum. (See Ge et al. (2015)
for further discussion.)

It turns out that these requirements are reasonable in practical applications.
Indeed, it it has been shown theoretically that all saddle points are strict in many
of the nonconvex problems mentioned earlier, including tensor decomposition,
phase retrieval, dictionary learning and matrix completion (Ge et al., 2015; Sun
et al., 2016a,b; Bhojanapalli et al., 2016; Ge et al., 2016) Coupled with the fact
(mentioned above) that there is a single global minimum in such problems, we
see that an algorithm that converges to a second-order stationary point will
actually converge to a global minimum.

To obtain rates of convergence, we need to weaken the definitions of station-
arity to allow an algorithm to arrive in a ball of size ϵ > 0 around a stationary
point, for varying ϵ. We define an ϵ-first-order stationary point as a point x ∈ X
such that ∥∇f(x)∥ ≤ ϵ. Similarly we define an ϵ-second-order stationary point
as a point x ∈ X for which λmin(∇2f(x)) ≥ −√ρϵ, where ρ is the Hessian
Lipschitz constant. (We have followed Nesterov and Polyak (2006) in using a
parameterization for the Hessian that is relative to size of the gradient.)

Finally, we need to impose smoothness conditions on f that are commensu-
rate with the goal of finding second-order stationary points. In particular, we
require both the gradient and the Hessian to be Lipschitz:

∥∇f(x1)−∇f(x2)∥ ≤ ℓ∥x1 − x2∥ (17)
∥∇2f(x1)−∇2f(x2)∥ ≤ ρ∥x1 − x2∥, (18)

for constants 0 < ℓ, ρ <∞, and for all x1,x2 ∈ X .
Before turning to algorithmic issues, let us calibrate our expectations re-

garding achievable rates of convergence by considering the simpler problem of
finding an ϵ-first-order stationary point, under a Lipschitz condition solely on
the gradient. Nesterov (1998) has shown that if gradient descent is run with
fixed learning rate η = 1

ℓ , and the termination condition is ∥∇f(x)∥ ≤ ϵ, then
the output will be an ϵ-first-order stationary point, and the algorithm will ter-
minate within the following number of iterations:

O

(
ℓ(f(x0)− f⋆)

ϵ2

)
,
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Algorithm 1 Perturbed Gradient Descent (PGD)
for k = 0, 1, . . . , do

if ∥∇f(xk)∥ < g and no perturbation in last T steps then
xk ← xk + ξk ξk ∼ Unif (B0(r))

xk+1 = xk − η∇f(xk)

where x0 is the point at which the algorithm is initialized. While the rate
here is less favorable than in the case of smooth convex functions—where it is
O(ϵ)1—the rate retains the essential feature from the convex setting that it is
independent of dimension. Recall, however, that saddle points are ϵ-first-order
stationary points, and thus this result describes (inter alia) the rate of approach
to a saddle point. The question that we now turn to is the characterization of
the rate of escape from a saddle point, where we expect that dimensionality will
rear its head.

Turning to algorithmic considerations, we first note that—in contradistinc-
tion to the convex case—pure gradient descent will not suffice for convergence
to a local minimum. Indeed, in the presence of saddle points, the rate of con-
vergence of gradient descent can depend exponentially on dimension (Du et al.,
2018). Thus we need to move beyond gradient descent to have a hope of effi-
cient escape from saddle points. We could avail ourselves of Hessians, in which
case it would be relatively easy to identify directions of escape (as eigenvectors
of the Hessian), but as discussed earlier we wish to avoid the use of Hessians
on computational grounds. Instead, we focus on gradient descent that is aug-
mented with a stochastic perturbation. Ge et al. (2015) and Jin et al. (2017a),
studied such an augmentation in which a homogeneous stochastic perturbation
(uniform noise in a ball) is added sporadically to the current iterate. Specifi-
cally, noise is added when: (1) the norm of the gradient at the current iterate
is small, and (2) the most recent such perturbation is at least T steps in the
past, where T is an algorithmic hyperparameter. We refer to this algorithm as
“perturbed gradient descent” (PGD); see Algorithm 1.

We can now state a theorem, proved in Jin et al. (2017a), that provides a
convergence rate for PGD. Note that PGD has various algorithm hyperparam-
eters, including r (the size of the ball from which the perturbation is drawn), T
(the minimum number of time steps between perturbations), η (the step size),
and g (the bound on the norm of the gradient that triggers a perturbation).
As shown in Jin et al. (2017a), all of these hyperparameters can be specified
as explicit functions of the Lipschitz constants ℓ and ρ. The only remaining
hyperparameters are a constant quantifying the probability statement in the
theorem, and a universal scaling constant.

Theorem 2 (Theorem). Assume that the function f is ℓ-smooth and ρ-Hessian
Lipschitz. Then, with high probability, an iterate xk of PGD (Algorithm 1) will

1In Section 1 we expressed rates in terms of the achieved ϵ after a given number of iterations;
here we use the inverse function, expressing the number of iterations in terms of the accuracy.
Expressed in the former way, the rate here is O(1/

√
k).
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be an ϵ-second order stationary point after the following number of iterations k:

O

(
ℓ(f(x0)− f⋆)

ϵ2
log4

(
d

ϵ2

))
.

We see that the first factor is exactly the same as for ϵ-first-order stationary
points with pure gradient descent. The penalty incurred by incorporating the
perturbation—and thereby avoiding saddle points—is quite modest—it is only
polylogarithmic in the dimension d.

With this convergence result as background, we turn to the main question of
this section: Does acceleration aid in the escape from saddle points? In particu-
lar, can we improve on the rate in Theorem 2 by incorporating acceleration into
the perturbed gradient descent algorithm? We will see that the answer is “yes”;
moreover, we will see that a continuous-time dynamical-systems perspective will
play a key role in establishing the result.

A major challenge in analyzing accelerated algorithms is that the objective
function does not decrease monotonically as is the case for gradient descent. In
the convex case, we met this challenge by exploiting the Lagrangian/Hamiltonian
formulation to design a Lyapunov function; see Eq. (11). These Lyapunov func-
tions, however, involve the global minimum x⋆, which is unknown to the algo-
rithm. This is not problematic in the convex setting, as terms involving x⋆ can
be bounded using convexity; in the nonconvex setting, however, it is fatal.

To overcome this problem in the nonconvex setting, Jin et al. (2017b) devel-
oped a Hamiltonian that is appropriate for the analysis of nonconvex problems.
Specializing to Euclidean geometry, the function takes the following form:

Et :=
1

2η
∥vt∥2 + f(xt); (19)

a sum of kinetic energy and potential energy terms. Let us consider using this
Hamiltonian to analyze the following second-order differential equation:

ẍ+ θ̃ẋ+∇f(x) = 0. (20)

Integrating both sides, we obtain:

f(x(t2)) +
1

2
ẋ(t2)

2 = f(x(t1)) +
1

2
ẋ(t1)

2 − θ̃

∫ t2

t1

ẋ(t)2dt. (21)

The integral shows that the Hamiltonian decreases monotonically with time
t, and the decrease is given by the dissipation term θ̃

∫ t2
t1

ẋ(t)2dt. Note that
Eq. (21) holds regardless of the convexity of f(·).

Although the Hamiltonian decreases monotonically in continuous time, Jin
et al. (2017b) show that this is not the case in discrete time (in the nonconvex
setting). Thus, once again, the complexity associated with acceleration mani-
fests itself principally in the transition to discrete time. Jin et al. (2017b) were
able to resolve this problem by isolating a condition under which the change of
the Hamiltonian is indeterminate (it may decrease or increase), and show that
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Algorithm 2 Perturbed Accelerated Gradient Descent (PAGD)
1: v0 = 0
2: for k = 0, 1, . . . , do
3: if ∥∇f(xk)∥ ≤ ϵ and no perturbation in last T steps then
4: xk ← xk + ξk ξk ∼ Unif (B0(r))

}
Perturbation

5: yk = xk + λkvk

6: xk+1 = yk − η∇f(yk)

 AGD
7: vk+1 = xk+1 − xk

8: if f(xk) ≤ f(yk) + ⟨∇f(yk),xk − yk⟩ − γ
2 ∥xk − yk∥2 then

9: (xk+1,vk+1) = Negative-Curvature-Exploitation(xk,vk)} Negative curvature
exploitation

under the complement of this condition, the Hamiltonian necessarily decreases.
Roughly speaking, the condition arises when the function is “too nonconvex.”
Moreover, this condition can be assayed algorithmically, and the algorithm can
be modified to ensure decrease of the Hamiltonian when the condition arises.

The overall algorithm, Perturbed Accelerated Gradient Descent (PAGD), is
presented in Algorithm 2. Steps 3 and 4 are identical to the PGD algorithm.
Steps 5, 6 and 7 replace gradient descent in the latter algorithm with accelerated
gradient descent (cf. Eq. (3)). Step 8 measures the “amount of nonconvexity,”
and if it is too large, makes a call to a function called “Negative-Curvature-
Exploitation.” This function does one of two things: (1) if the momentum is
large, it zeros out the momentum; (2) if the momentum is small, it conducts
a local line search along the direction of the momentum. Jin et al. (2017b)
prove that this overall algorithm yields monotone decrease in the Hamiltonian.
Moreover, they use this result to prove the following theorem regarding the
convergence rate of PAGD. (As in the case of PGD, we are not specifying the
settings of the various algorithm hyperparameters; we refer to Jin et al. (2017b)
for these settings. We note, however, that all hyperparameters are functions of
the Lipschitz constants ℓ and ρ, with the exception of a constant quantifying
the probability statement in the theorem, and a universal scaling constant.)

Theorem 3. Assume that the function f is ℓ-smooth and ρ-Hessian Lipschitz.
Then, with high probability, at least one of iterates, xk, of PAGD (Algorithm 2)
will be an ϵ-second order stationary point after the following number of iterations:

O

(
ℓ1/2ρ1/4(f(x0)− f∗)

ϵ7/4
log6

(
d

ϵ

))
.

Comparing this result to Theorem 2, we see that the rate has improved
from 1/ϵ2 to 1/ϵ7/4. Thus we see that acceleration provably improves upon
gradient descent in the nonconvex setting—acceleration hastens the escape from
saddle points. We also see that, once again, there is a mild—polylogarithmic—
dependence on the dimension d.
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Figure 3: Perturbation ball in three dimensions and “thin pancake” stuck region.

The core of the proofs of Theorems 2 and 3 revolves around the study of the
local geometry around saddlepoints and its interaction with gradient-descent
dynamics. As depicted in Figures 3 and 4, there is a slab-like region in the
neighborhood of a saddle point in which gradient descent will be “stuck”—taking
an exponential amount of time to escape. This region is not flat, but instead
varies due to the variation of the Hessian in this neighborhood. The Lipschitz
assumption gives us control over this variation. To analyze the width of the
stuck region, and thus its volume as a fraction of the perturbation ball, Jin et al.
(2017b) study the rate of escape of a pair of gradient-descent (or accelerated-
gradient-descent) sequences that start on the sides of the stuck region. These
initial points are a distance r apart along the direction given by the minimum
eigenvector of the Hessian, ∇2f(x), at the saddle point. The critical value r
for which at least one of the two sequences escapes the stuck region quickly
can be computed, and this provides an estimate of the volume of the stuck
region. The overall result is that this volume is small compared to that of
the perturbation ball, and thus the perturbation is highly likely to cause the
optimization algorithm to leave the stuck region (and not return).

4 Underdamped Langevin Diffusion
Our focus thus far has been on dynamical systems which are deterministic, with
stochasticity introduced in a limited way—as a perturbation that ensures fast es-
cape from a saddle point. The particular perturbation that we have analyzed—a
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w

Figure 4: Gradient flow and “narrow band” stuck region in two dimensions.

uniform perturbation in a ball—is sufficient for fast escape, but it is not nec-
essary. Given the success of this simple choice, however, we are motivated to
study more thoroughgoing stochastic approaches to our problem. We may wish
to investigate, for example, whether a less homogeneous perturbation might suf-
fice. Also, recalling the statistical learning setting that motivates us, even if the
optimization problem is formulated as a deterministic one, the underlying data
that parameterize this problem are best viewed as random, such that algorithm
tractories become stochastic processes, and algorithm outputs become random
variables. Thus, taking a stochastic-process point of view opens the door to
connecting algorithmic results to inferential results.

We thus turn to a discussion of stochastic dynamics. Given our continuous-
time focus, these stochastic dynamics will be expressed as stochastic differential
equations. Moreover, we will again be interested in second-order (“momentum”)
dynamics, and will investigate the extent to which such dynamics can yield
improvements over first-order dynamics.

The classical connection between gradient descent and stochastic differential
equations is embodied in the overdamped Langevin diffusion:

dxt = −∇f(xt)dt+
√
2dBt,

where xt ∈ Rd and Bt is d-dimensional standard Brownian motion. Under
mild regularity conditions, it is known that the invariant distribution of this
continuous-time process is proportional to p⋆(x) ∝ exp((f(x))). Thus samples
from p⋆(x) can be obtained by solving the diffusion numerically. Such a numer-
ical solution is generally refered to as “Langevin Markov chain Monte Carlo” or
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“Langevin MCMC.”
Asymptotic guarantees for overdamped Langevin MCMC were established

in Gelfand and Mitter (1991). The first explicit proof of non-asymptotic con-
vergence of overdamped Langevin MCMC for log-smooth and strongly log-
concave distributions was given by Dalalyan (2017), who showed that discrete,
overdamped Langevin diffusion achieves ϵ error, in total variation distance, in
O(d/ϵ2) steps. Following this, Durmus and Moulines (2016) proved that the
same algorithm achieves ϵ error, in 2-Wasserstein distance, in O(d/ϵ2) steps.2

Our second-order perspective motivates us to consider underdamped Langevin
diffusion:

dvt = −γvtdt− u∇f(xt)dt+
√

2γudBt

dxt = vtdt, (23)

where u and γ are parameters. It can be shown that the invariant distribution
of this continuous-time process is proportional to exp((f(x) + ∥v∥22/2u)). Thus
the marginal distribution of x is proportional to exp(f(x)) and samples from
p⋆(x) ∝ exp(−f(x)) can be obtained by solving the underdamped Langevin
diffusion numerically and ignoring the momentum component.

Underdamped Langevin diffusion is interesting because it is analogous to
accelerated gradient descent; both are second-order dynamical systems. More-
over, it contains a Hamiltonian component, and its discretization can be viewed
as a form of Hamiltonian MCMC. Hamiltonian MCMC has been empirically
observed to converge faster to the invariant distribution compared to standard
Langevin MCMC (Betancourt et al., 2017).

In recent work, Cheng et al. (2017) have analyzed underdamped Langevin
diffusion. They have shown that—in the same setting analyzed by Durmus and
Moulines (2016) for overdamped Langevin diffusion—that the underdamped
algorithm achieves a convergence rate of O(

√
d/ϵ) in 2-Wasserstein distance.

This is a significant improvement over the O(d/ϵ2) rate of overdamped Langevin
diffusion, both in terms of the accuracy parameter ϵ and the dimension d.

5 Discussion
The general topic of gradient-based optimization, and its application to large-
scale statistical inference problems, is currently very active. Let us highlight
one particular set of questions that appear likely to attract ongoing attention
in coming years. Note that optimization methods are used classically in the
statistical setting to solve point estimation problems, where the core problem

2 Recall that the Wasserstein distance, W2(µ, η), between probability measures µ and η is
defined as follows:

W2(µ, η) :=

(
inf

ζ∈Γ(µ,η)

∫
∥x− y∥22dζ(x,y)

)1/2

, (22)

where ζ ranges over the set of transference plans Γ(µ, η).
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is to output a single point in the configuration space that has desirable sta-
tistical properties. But the broader problem is to provide in addition an in-
dication of the uncertainty associated with that output, in the form of some
summary of a probability distribution. Optimization ideas can be relevant here
as well, by considering a configuration space that is a space of probability dis-
tributions. Relatedly, one can ask to converge not to a single point, but to a
distribution over points. The Hamiltonian approach naturally yields oscillatory
solutions, and, as we have seen, some work is required to obtain algorithms
that converge to a point. This suggests that the Hamiltonian approach may
in fact be easier to employ in the setting of distributional convergence than in
the point estimation setting, and thereby provide an algorithmic bridge between
point estimation and broader inference problems. Indeed, in Bayesian inference,
Hamiltonian formulations (and symplectic integration, in the form of leapfrog
integrators) have been successfully employed in the setting of Markov chain
Monte Carlo algorithms, where the momentum component of the Hamiltonian
(empirically) provides faster mixing. Deeper connections between acceleration
and computationally-efficient inference are clearly worth pursuing.
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