
HRN: A Holistic Approach to One Class Learning

Wenpeng Hu1,∗, Mengyu Wang2,∗, Qi Qin2,3 , Jinwen Ma1, and Bing Liu2,†

1Department of Information Science, School of Mathematical Sciences, Peking University
2Wangxuan Institute of Computer Technology, Peking University

3Center for Data Science, AAIS, Peking University
{wenpeng.hu,wangmengyu,qinqi,jwma,dcsliub}@pku.edu.cn

Abstract

Existing neural network based one-class learning methods mainly use various forms
of auto-encoders or GAN style adversarial training to learn a latent representation
of the given one class of data. This paper proposes an entirely different approach
based on a novel regularization, called holistic regularization (or H-regularization),
which enables the system to consider the data holistically, not to produce a model
that biases towards some features. Combined with a proposed 2-norm instance-
level data normalization, we obtain an effective one-class learning method, called
HRN. To our knowledge, the proposed regularization and the normalization method
have not been reported before. Experimental evaluation using both benchmark
image classification and traditional anomaly detection datasets show that HRN
markedly outperforms the state-of-the-art existing deep/non-deep learning models.
The code of HRN can be found here3.

1 Introduction

One-class learning or classification has many applications. For example, in information retrieval,
one has a set of documents of interest and wants to identify more such documents [55]. Perhaps,
the biggest application is in anomaly or novelty detection, e.g., intrusion detection, fraud detection,
medical anomaly detection, anomaly detection in social networks and Internet of things, etc [8, 9].
Recently, image and video based applications have also become popular [13, 49, 70]. More details
about these applications and others can be found in the recent survey [7, 61].

One-class learning: Let X be the space of all possible data. Let X ⊆ X be the set of all instances of
a particular class. Given a training dataset T ⊆ X of the class, we want to learn a one-class classifier
f(x) : X → {0, 1}, where f(x) = 1 if x ∈ X (i.e., x is an instance of the class) and f(x) = 0
otherwise (i.e., x is not an instance of the class, e.g., an anomaly). In most applications, deciding
whether a data instance belongs to the given training class or is an anomaly can be subjective and a
threshold is often used based on the application. Like most existing papers [68, 64, 8, 82], this work
is interested in a score function instead, and ignores the above binary decision problem. In this case,
the commonly used evaluation metric is AUC (Area Under the ROC curve).

Early works on one-class classification or learning include one-class SVM (OCSVM) [75], and
Support Vector Data Description (SVDD) [78]. More recently, deep learning models have been
proposed for the same purpose [68, 8], which mainly learn a good latent representation of the given

∗Equal contribution
†Corresponding author. The work was done when B. Liu was at Peking University on leave of absence from

University of Illinois at Chicago, liub@uic.edu.
3https://github.com/morning-dews/HRN

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/morning-dews/HRN

class of data using various auto-encoders [1, 14, 65, 71, 83, 69] or GAN [27] style adversarial
training [74, 72, 15, 64]. Recent surveys of one-class classification can be found in [8, 37].

In this paper, we propose an entirely new one-class learning approach, which directly learns from a
single class of data without using any auto-encoder or adversarial training technique. The key novelty
of the proposed method is a new loss function (called one-class loss), which consists of negative log
likelihood (NLL) for one class and a novel regularization method called holistic regularization (or
H-regularization). This new regularization constrains the model training so that it considers the one
class of data holistically, not arbitrarily biases any features. We argue that one of the key issues of
one-class learning is how to avoid biasing some features in model building as we have no idea where
anomalies or negative data may be or what their distribution may be. Any bias can be detrimental.
This issue has not been explicitly addressed by existing approaches. Combined with a 2-norm
instance-level normalization for each data instance (different from that in [79], see Sec. 3.2), we
obtain an effective one-class learning method, called HRN (H-Regularization with 2-Norm instance-
level normalization). To our knowledge, both H-regularization and the normalization method have not
been reported in the literature. Empirical evaluation using three image classification datasets widely
used in evaluating one-class learners and three traditional benchmark anomaly detection datasets
demonstrates the effectiveness of HRN. It outperforms eleven state-of-the-art baselines considerably.

On broader impact, we believe that our holistic one-class learning can help positive and unlabeled (PU)
learning [52], open-world learning (or out-of-distribution detection) [23], and continual learning [11,
63] as all these learning paradigms need to face unseen/novel situations. We will briefly discuss a
continual learning method based on the proposed one-class loss, which achieves very good results.

2 Related Work

Much of the existing work on anomaly, outlier or novelty detection can be regarded as some form
of one-class learning from a class of normal data. Early work in statistics [4] was mainly based
on probabilistic modeling of the distribution of the normal data and regard data points with low
probabilities in the distribution as anomalies [4, 87, 22, 86]. In general, anomaly detection algorithms
can be classified into the following categories: distance based methods [42, 3, 28, 31, 60], density
based methods [38, 56, 6], mixture models [3, 43], one-class classification based methods [75, 78, 39],
deep learning based representation learning using auto-encoders [10, 89, 69, 7, 94] and adversarial
learning [74, 15, 64, 20], ensemble methods [53, 10], graphs and random walks [58, 31], transfer
learning [45, 2], and multi-task learning [35]. Several surveys have also been published [9, 66, 7, 61].

About one-class learning, one-class SVM (OCSVM) [75] was perhaps the earliest method, which
uses the kernel SVM to separate the data from the origin. It essentially treats the origin as the
only negative data point. Another earlier method based on kernel SVM is the Support Vector Data
Description (SVDD) [78], which tries to find a hypersphere to enclose the given class of data. [21]
learns features using deep learning and then applies OCSVM or SVDD to build the one-class model.

The recent DSVDD (Deep Support Vector Data Description) proposed a deep learning solution to
implement SVDD [68]. Similar to the original SVDD, it trains a neural network to minimize the
volume of the hypersphere that encloses the given class of data. Our HRN system does not use
these ideas and it outperforms OCSVM and DSVDD significantly (see Sec. 4). Most deep learning
anomaly/novelty detection methods are based on one-class learning. They almost exclusively use
the neural network representation learning capability to generate a latent representation of the given
class [1, 14, 16, 25, 51, 65, 68, 71, 83, 92, 95, 69, 73, 26, 82]. Most methods employ various forms
of auto-encoders. Some also use GAN [27] based methods [72, 64, 93, 20]. Some even use anomalies
in the training data to build multi-class classifiers [76, 36, 62]. Additionally, there are works based
on neural density estimation [81], multiple hypothesis prediction [59], robust mean estimation [19],
etc. For a survey of deep learning based one-class anomaly detection methods, see [8]. Our work is
different as we do not use an auto-encoder, adversarial training, or any other above method.

OCGAN [64] is a representative work on one-class anomaly detection using both an auto-encoder
and a GAN style adversarial learning. It first uses an auto-encoder to learn a latent representation of
the given class. It then forces latent representations of in-class normal examples to be distributed
uniformly across the latent space. Finally, it trains a discriminator using the GAN’s adversarial
learning to differentiate between images of the given class and fake images generated from random
latent samples using its decoder. When the discriminator is fooled, fake images chosen at random in

2

general will look similar to examples from the given class. Then the latent representation generated
for the given class is of good quality. Earlier GAN-based methods include [74, 72, 15].

Also related is the out-of-distribution discovery. The in-distribution data may consist of 5 classes
of CIFAR10 and is used to build a model, which is tested using another class not used in training.
Various forms of thresholding were used to detect anomalies [23, 24, 33, 51, 18, 76, 36, 20, 85].

3 Proposed HRN Model

Background: In general, a supervised machine learning model is trained to minimize the expected
error over the training data, known as empirical risk minimization. That is, given the training data X
and its corresponding label set Y , a model f(·), parameterized by θ, is trained to minimize the error
(or loss) between f(X) and Y :

min
θ
L(f(X), Y), (1)

where L(·) is the loss function. With the help of the loss function and an optimization method, model
f(·) can be learned to map X to Y . An important requirement of this classic supervised learning
paradigm is that it needs at least two classes of data in order to learn.

However, in our case, we only have a single class of data. Here we present the proposed one-class
learning method HRN, which uses the above learning paradigm, but employs a novel loss function
called one-class loss with an accompanied instance-level data normalization method.

The architecture of f(·) can be any existing neural network. This paper uses a simple multilayer
perceptron (MLP) with a single output unit, which already achieves very good results. Formally, the
ith layer of the MLP is:

yi = σ(xi) (2)
where σ is the activation function. We suggest to use ReLU or Leaky-ReLU (see Sec. 3.1).4 xi is the
input of the current layer (output of the last layer) or is x if the current layer is the first layer. Note
that no activation function is used in the final layer (a single output unit) as a Sigmoid function is
applied on f(·) to squash the output to (0, 1) during training.

3.1 One-class Loss

In learning the given class C with its training data, the proposed one-class loss is:

L = E
x∼Px

[− log(Sigmoid(f(x)))]︸ ︷︷ ︸
NLL

+λ · E
x∼Px

‖∇xf(x)‖n2︸ ︷︷ ︸
H-regularization

(3)

where Px denotes the data distribution of class C, and exponent n and λ are hyper-parameters
controlling the strength of the penalty and balancing the regularization respectively. Sigmoid(f(x)) ∈
(0, 1) can be seen as the probability of x belonging to class C. Since we have only one class/head in
the output, using Sigmoid() is a natural choice. We explain the two terms in Eq. (3) below.

NLL (Negative Log Likelihood for one-class). Minimizing NLL means to train the model f(·) to
output high values (thus low NLL) for the input training data of the class according its distribution to
help recognize instances belonging to the given class. However, since we only have one class of data,
minimizing NLL leads to two major problems:

Problem-I (uncontrollable f(x) output). It may lead to a saturated Sigmoid(f(·)) which means that
Sigmoid(f(·)) will output 1 all the time. We have no control over the growth or the value of f(·)
as Sigmoid flattens out after a certain value of f(·). Thus minimizing NLL (i.e., maximizing f(·))
can lead to malformed parameters, e.g., all parameters may have large absolute values of arbitrary
magnitudes, which results in the high chance that an anomaly or noise may get a very high f(·) value.

Problem-II (feature bias). Features (or dimensions) of the input data with high values are very likely
to be emphasized by the head and their related parameters are likely to have very high values. But
those features might not be the important features for recognizing whether an input test instance
belongs to the given class or not, which leads to poor accuracy. This problem is caused by the fact
that we don’t have other classes to compare with to identify the most discriminative features.

4Using a ReLu-like activation by no means a restriction as it is widely used, e.g., in Transformer, ResNet, etc.

3

H-regularization (holistic regularization).5 H-regularization aims to solve these two problems. For
Problem-I, assume the head for class C is a two-layer MLP with a single output unit (which is the
case in HRN) and σ(·) is the activation function. Then, we can show f(x) = w2 · σ(w1x), where
w1 and w2 are the parameters of the first and second layer respectively. Thus, we have:

E
x∼PCx

‖∇xf(x)‖n2 = E
x∼PCx

‖w2 · ∇w1xσ(w1x) ·w1‖n2 . (4)

The exact expression depends on the activation function. For ReLU (which we use in HRN), the
elements in ∇w1xσ(w1x) are either 1 (ReLU(w1x) > 0) or 0 (ReLU(w1x) ≤ 0). Let us first
consider ∇w1xσ(w1x) ≡ 1 for all elements, which gives us:

E
x∼PCx

‖∇xf(x)‖n2 = ‖w2 ·w1‖n2 . (5)

Clearly, H-regularization can constrain the arbitrary growth of w1 and w2 parameter values and
consequently the arbitrary growth and magnitude of f(·) because the arbitrary growth of the parameter
values will lead to high penalties on H-regularization and thus high losses, i.e., a trade-off between
NLL and H-regularization. Specifically, a high parameter value leads to a high f(·) and thus a low
NLL, but a high value for H-regularization. The training goal of the one-class loss is thus to find a
point where f(·) outputs a value as high as possible under the condition of having parameters with
values as small as possible. Equivalently, it is to achieve Sigmoid(f(·)) close to 1 while f(·) as small
as possible. This is achievable as Sigmoid(f(·)) flattens out after f(·) reaches a certain value.

When ∇w1xσ(w1x) ≡ 1 for all elements is not true, the 0 elements in it simply block some
neurons/units, which we can ignore because the blocked neurons have no contributions to the final
f(·) output. Note that we suggest to use piece-wise linear function as the activation function, e.g.,
ReLU and Leaky-ReLU, as both Sigmoid and Tanh are too flat for high input values. Take Sigmoid
as an example,∇w1xσ(w1x) = σ(w1x)(1− σ(w1x)), if w1 is already biased (with high values),
the regularization tends to be blocked.

For Problem-II, as we know, the derivative ∇xf(x) shows the importance of each feature of x. The
features with large derivatives contribute more to the final output as small changes in them can lead
to large changes in the f(x) output and they also give large values for H-regularization, which is
undesirable for loss minimization. In this case, minimizing H-regularization can ease the problem
that the output is dominated by some specific features of the input x.

We can also reach this conclusion using Eq. (5), the dimensions in w2 · w1 corresponding to the
contributions of the same feature dimensions of the input. In this case, the output will not be saturated
by a few features of the input due to the H-regularization expressed as the right-hand-side of Eq. (5).
In addition to this, since the L2-norm in Eq. (5) gives more penalties to the features with high values
and little penalty to the features with low values, the parameter values will be more balanced. Note,
we give the proposed regularization its name because it constrains the model to consider the input
data more holistically rather than being biased by some specific features and noises in the data.

Note that the Gradient Penalty (GP) in WGAN [29] is defined as Ex̂∼Px̂
[(‖∇x̂f(x̂)‖2 − 1)2] to

make f(·) a 1-Lipschtiz function, which looks similar to our H-regularization. However, it behaves
differently especially when ‖∇x̂f(x̂)‖2 < 1 (which has an opposite effect to ours), and is thus not
suitable for our work. We experimented with it and got poor results.

3.2 2-Norm Instance-Level Data Normalization

Different feature scales in data instances can lead to different output scales of f(·), which may
confuse the model to produce poor results. Let an input data instance be x and its 2-norm be ||x||2.
Assume the model f(·) is a two-layer MLP with a single output unit and ReLU is the activation
function (as suggested in Sec. 3.1 and used in HRN). It is easy to see f(x) = w2 · ReLU(w1x),
where w1 and w2 are the parameters of the first and second layer respectively, and

‖f(x)‖2 = ‖w2 · ReLU(w1x)‖2 ≤ ‖w2‖2 · ‖ReLU(w1x)‖2
≤ ‖w2‖2 · ‖w1x‖2 ≤ ‖w2‖2 · ‖w1‖2 · ‖x‖2.

(6)

This derivation uses consistent matrix norm properties ‖AB‖2 ≤ ‖A‖2‖B‖2 and ‖ReLU(x)‖2 ≤
‖x‖2. Eq. (6) shows the scale of x can affect the upper bound of f(x). Given x with a large norm,
we tend to get a high f(·) response.

5H-regularization has some resemblance to L2 regularization. We will see L2 is significant poorer in Sec. 4.3.

4

To deal with this issue, we normalize x so that its norm is 1, i.e., x := x/‖x‖2, which we call 2-norm
instance normalization. This is an instance-level normalization, which is different from the traditional
feature-level normalization that normalizes each feature across all instances.

We further subtract the mean from each feature value to make the feature values of each instance
having zero-mean. Without this subtraction, all positive feature values in the input data will result
in all parameters of f(·) positive (see Eq. 3). With negative values in the input data, some network
parameter values can be negative, which increase the value space of parameters and consequently
the probability of learning a better model. Note that this normalization is different from the instance
normalization in [79], which is similar to the traditional z-score and normalizes the contrast of the
images. It performs significantly poorer than our normalization (see Sec. 4.4).

4 Empirical Evaluation

We empirically evaluate the proposed algorithm HRN using six benchmark datasets and eleven
state-of-the-art baselines. Following existing papers, no pre-trained feature extractors were used in
the main evaluation. At the end of Sec. 4.3, we will try an ImageNet pre-trained feature extractor
to see whether pre-training makes a difference. It can make a big difference. As a broader impact,
Sec. 4.5 briefly describes a continual learning method that applies the proposed one-class loss.

4.1 Experiment Datasets and Baselines

Datasets. We use three benchmark image classification datasets and three benchmark traditional non-
image anomaly detection datasets that have been used in many previous papers. (1) MNIST [47]6

is a handwritten digit classification dataset of 10 digits, i.e., 10 classes. The dataset has 70,000
examples/instances, with the splitting of 60,000 for training and 10,000 for testing. (2) fMNIST
(fashion-MNIST) [84]7 consists of a training set of 60,000 examples and a test set of 10,000 examples
of 10 classes. Each example is a 28x28 grayscale fashion picture. (3) CIFAR-10 [44]8 is also an
image classification dataset consisting of 60,000 32x32 color images of 10 classes with the splitting
of 50,000 for training and 10,000 for testing.

For each of these three image datasets, we use the training data of each class C in the dataset in turn
as the one class data to build a model and then test the model using the full test set of all classes. The
rest of the classes except C are anomalies. The three non-image datasets are:

(4) KDDCUP99 9 consists of 450000 training instances and 44021 test instances of two classes. The
majority class (80% of the data) is regarded as the one class used in learning. (5) Thyroid 10 uses the
version in TQM [81] with 3772 instances, 1839 for training and 1933 for testing. The hyperfunction
class is treated as the novel class and the rest as the one class for learning. (6) Arrhythmia 11 uses the
data split of normal and abnormal in DAGMM [95] with 193 casee for training and 259 for testing.

Baselines. The following 11 baselines are compared. (1) DSVDD (Deep SVDD) [68]: A recent
deep one-class classifier described in Sec. 2. (2) ICS [73]: A latest one-class method. It first splits
the one class training data into two subsets, typical and atypical. It then trains a binary classifier.
(3) OCGAN [64]: A latest GAN-based one-class anomaly detection method described in Sec. 2.
(4) ADGAN [15]: Also a GAN-based method. GAN runs on the normal data to learn a generator
to produce a latent representation to approximate the one class distribution. In testing, if a test
case is drawn from the given one class, there exist some points in GAN’s latent space which, after
passing through the generator network, should generate something closely resemble this instance.
ADGAN uses this idea to perform anomaly detection. (5) TQM [81]: A latest work that produces
a multivariate triangular quantile maps (TQM) score function, which is estimated using an auto-
encoder, a flow-based neural density estimator, and KL-divergence. (6) DAGMM [95]: A joint model
using an auto-encoder and a Gaussian mixture model. It first uses the auto-encoder to generate a latent

6http://yann.lecun.com/exdb/mnist/
7https://github.com/zalandoresearch/fashion-mnist
8https://www.cs.toronto.edu/ kriz/cifar.html
9http://kdd.ics.uci.edu/databases/kddcup99

10http://archive.ics.uci.edu/ml
11http://archive.ics.uci.edu/ml

5

representation and the reconstruction error for each input data instance, which are then fed into the
Gaussian Mixture Model. (7) VAE [40]: The classic variational auto-encoder. As mentioned in Sec. 2
that many existing works are based auto-encoders, we thus include this and the next auto-encoder
baselines. (8) DAE (Denoising auto-encoder) [30, 80]: The reconstruction error is used as the scoring
function. (9) OCSVM [75]: A well-known one-class SVM method based on kernel SVM (see Sec. 2)
(10) iForest [53]: An ensemble method that builds a number of random unsupervised trees to isolate
anomalies. (11) HRN-L2: HRN with H-regularization replaced by L2-regularization.

4.2 Training Details and Hyper-parameter Selection

HRN uses a simple MLP (Multilayer Perceptron), which can produce the state-of-the-art results.
Each experiment on a class takes less than 5 minutes. Specifically, a MLP of size [784-100]-[100-1]
is used for MNIST and fMNIST, of size 3*[1024-300]-[900-300]-[300-1] for CIFAR-10 12 and of
size [125-100]-[100-1] for KDDCUP99, and of size [6-100]-[100-1] for Thyroid. We use SGD with
moment as the optimizer. The learning rate is 0.1. To get the best of baselines, we take their results
from their papers whenever possible as the experiment setups are the same and only run their code
when a result was not reported. In each experiment, we run HRN 100 epochs and run baselines using
their original settings to get the maximum accuracy. We repeat this 5 times and report the average
result. Hyper-parameter tuning for one-class learning is more challenging as there is only one class of
data. TQM [82] set 10% of the data as the validation set for each dataset. DSVDD [68] reported the
best test result using a range of values for its hyper-parameters. Two hyper-parameters in HRN need
tuning, λ and n in H-regularization (Eq. 3). We followed the TQM approach and used grid search.
However, we used only the MNIST data to search for hyper-parameter values and then applied the
values to all 5 datasets. Grid search uses the following tuning ranges: for λ, from 0 to 1 with step
0.05 and for n, from 1 to 20 with step 1. This gives 41 combinations as we try one, fix it and then the
next. After tuning on MNIST, we get λ = 0.1 and n = 12 (the results are similar for 10 ≤ n ≤ 16),
which were applied to all datasets in all experiments without change.

4.3 Results and Discussion

Image Datasets: We first report the results on the three image datasets and then the three non-image
datasets. The main results on the three image datasets are given in Table 1.13 AUC (Area Under
the ROC curve) is the evaluation metric, which is also used in most one-class and other anomaly
detection algorithms [7, 64, 68]. Each row in the table gives the average results over 5 runs of all
compared systems using one class (column 1) as the training data for a dataset. The last row gives the
average result of each column.

Table 1 allows us to make the following observations. (1) on average, the proposed algorithm HRN
outperforms all baselines consistently. (2) TQM does quite well for MNIST and fMINIST (although
it is slightly worse than HRN). However, it performs poorly on CIFAR-10. On average, its AUC is
only 52.10 while our HRN’s AUC is 71.32. This dataset was not used in the experimental evaluation
of the TQM paper. We used the code released by the authors and were able to reproduce their results
on MNIST and fMNIST. We tried to modify and optimize it for CIFAR-10, but were not able to
obtain a better result. (3) Overall ICS is the strongest baseline, but is still significantly weaker than
HRN. Its average AUC on the CIFAR-10 dataset is much better than other baselines, although it is
still markedly lower than HRN. (4) DAGMM is very weak for these datasets as it was not designed
for image data. (5) OCGAN is very competitive on MNIST, but does not do well on the other two
datasets compared to HRN. OCSVM and iForest also did reasonably well, but pooer than those
deep learning based methods in general. (6) MNIST is the easiest dataset and most systems do
fairly well except DAGMM. CIFAR-10 is the hardest and HRN does considerably better than the
baselines. (7) HRN-L2 (HRN with L2-regularization) is markedly poorer than HRN. One reason is
that there is still a very high Ex∼Px ‖∇xf(x)‖2, e.g., up to 9.37 on MNIST, but only 0.872 when
optimizing H-regularization, which shows that the output of f(·) is sensitive to the input x. For
example, ∆x = 0.1 will lead to an output change of up to 0.937 which is much higher than 0.087 for
H-regularization.

12The first layer has 3 sub-modules for extracting features independently from the 3 channels of the CIFAR-10
images. We then concatenate the outputs of the three sub-modules as the input to the second layer.

13We also experimented with CIFAR100 (100 classes), which is not used in baseline papers. HRN gets the
average AUC of 68.61 and the top baselines OCGAN and ICS get only 52.26 and 60.79 respectively.

6

Table 1: Average AUCs in % over 5 runs per method on the three image datasets.
Class OCSVM iForest DAE VAE DAGMM ADGAN OCGAN DSVDD ICS TQM HRN-L2 HRN

MNIST
0 98.6 96.9 89.4 99.7 50.0 99.5 99.8 98.0 98.9 99.5 97.0 99.5±0.0
1 99.5 99.5 99.9 99.9 76.6 99.9 99.9 99.7 99.8 99.8 98.7 99.9±0.0
2 82.5 75.6 79.2 93.6 32.6 93.6 94.2 91.7 91.7 95.3 89.4 96.5±0.1
3 88.1 83.5 85.1 95.9 31.9 92.1 96.3 91.9 96.6 96.3 92.3 97.4±0.1
4 94.9 87.9 88.8 97.3 36.8 94.9 97.5 94.9 86.5 96.6 91.6 97.2±0.1
5 77.1 75.5 81.9 96.4 49.0 93.6 98.0 88.5 88.9 96.2 76.2 97.2±0.2
6 96.5 87.4 94.4 99.3 51.5 96.7 99.1 98.3 98.8 99.2 94.4 99.2±0.0
7 93.7 90.6 92.2 97.6 50.0 96.8 98.1 94.6 96.1 96.9 92.0 97.6±0.1
8 88.9 73.8 74.0 92.3 46.7 85.4 93.9 93.9 95.0 95.5 90.7 94.3±0.2
9 93.1 88.0 91.7 97.6 81.3 95.7 98.1 96.5 90.0 97.7 91.4 97.1±0.0

Avg 91.29 85.87 87.66 96.96 50.64 94.82 97.50 94.80 94.23 97.30 91.37 97.59
fMNIST
0 86.1 91.0 86.7 87.4 42.1 89.9 85.5 79.1 88.3 92.2 91.5 92.7±0.0
1 93.9 97.8 97.8 97.7 55.1 81.9 93.4 94.0 98.9 95.8 97.6 98.5±0.1
2 85.6 87.2 80.8 81.6 50.4 87.6 85.0 83.0 88.2 89.9 88.2 88.5±0.1
3 85.9 93.2 91.4 91.2 57.0 91.2 88.1 82.9 92.1 93.0 92.7 93.1±0.1
4 84.6 90.5 86.5 87.2 26.9 86.5 85.8 87.0 90.2 92.2 91.0 92.1±0.1
5 81.3 93.0 92.1 91.6 70.5 89.6 88.5 80.3 89.4 89.4 71.9 91.3±0.4
6 78.6 80.2 73.8 73.8 48.3 74.3 77.5 74.9 78.3 84.4 79.4 79.8±0.1
7 97.6 98.2 97.7 97.6 83.5 97.2 93.9 94.2 98.3 98.0 98.9 99.0±0.0
8 79.5 88.7 78.2 79.5 49.9 89.0 82.7 79.1 88.6 94.5 90.8 94.6±0.1
9 97.8 95.4 96.3 96.5 34.0 97.1 97.8 93.2 98.5 98.3 98.9 98.8±0.0

Avg 87.09 91.52 88.13 88.41 51.8 88.43 87.82 84.77 91.08 92.77 90.09 92.84
CIFAR-10
0 61.6 66.1 41.1 70.0 41.4 63.2 75.7 61.7 76.8 40.7 80.6 77.3±0.2
1 63.8 43.7 47.8 38.6 57.1 52.9 53.1 65.9 71.3 53.1 48.2 69.9±1.3
2 50.0 64.3 61.6 67.9 53.8 58.0 64.0 50.8 63.0 41.7 64.9 60.6±0.3
3 55.9 50.5 56.2 53.5 51.2 60.6 62.0 59.1 60.1 58.2 57.4 64.4±1.3
4 66.0 74.3 72.8 74.8 52.2 60.7 72.3 60.9 74.9 39.2 73.3 71.5±1.0
5 62.4 52.3 51.3 52.3 49.3 65.9 62.0 65.7 66.0 62.6 61.0 67.4±0.5
6 74.7 70.7 68.8 68.7 64.9 61.1 72.3 67.7 71.6 55.1 74.1 77.4±0.2
7 62.6 53.0 49.7 49.3 55.3 63.0 57.5 67.3 64.1 63.1 55.5 64.9±1.1
8 74.9 69.1 48.7 69.6 51.9 74.4 82.0 75.9 78.9 48.6 79.9 82.5±0.2
9 75.9 53.2 37.8 38.6 54.2 64.2 55.4 73.1 66.0 58.7 71.6 77.3±0.9

Avg 64.78 59.72 53.58 58.33 53.13 62.42 65.66 64.81 69.27 52.10 66.65 71.32

Table 2: Average precision, recall, and F1 score on the three non-image datasets over 5 runs

KDDCUP99 Thyroid Arrhythmia
Method Precision Recall F1 Precision Recall F1 Precision Recall F1
OCSVM 74.57 85.23 79.54 36.39 42.39 38.87 53.97 40.82 45.81
iForest 1.0 89.88 94.67 99.88 89.57 94.44 83.90 89.12 86.43

DAGMM 92.97 94.42 93.69 47.66 48.34 47.82 49.09 50.78 49.83
TQM 96.22 96.22 96.22 75.27 75.27 75.27 53.03 53.03 53.03
HRN 98.83 98.83 98.83 95.87 95.87 95.87 84.46 84.46 84.46

Non-Image Datasets: Following the latest baseline TQM [81], we also use precision, recall and F1
score as the evaluation measures, and apply the same TQM’s thresholding method in HRN, making
the precision, recall and F1 scores the same. We use four baselines: OCSVM, iForest, DAGMM,
and TQM, which can work on both image and non-image data (the other baselines were designed
for images). The results are given in Table 2. HRN outperforms three baselines considerably. On
the Thyroid dataset, the improvement is dramatic, from F1 of 75.27 (TQM) to 95.87 (HRN). HRN

7

Table 3: Average AUCs in % of different components of HRN on the image datasets. Hreg:
H-regularization; 2N_Inst_Norm: our 2-norm instance normalization; Inst_Norm[79]: instance
normalization in [79]; SquareLoss: Square Loss

MNIST fMNIST CIFAR-10
NLL 55.42 57.12 52.64

NLL+Hreg 80.92 76.13 55.26
NLL+Hreg+Inst_Norm[79] 92.58 90.56 65.21

NLL+Hreg+2N_Inst_Norm (HRN) 97.59 92.84 71.32
SquareLoss 76.67 72.72 52.68

SquareLoss+Hreg+2N_Inst_Norm (HRN) 97.12 91.72 71.08

outperforms iForest on two datasets in F1, but is slightly poorer than iForest on Arrhythmia. This is
because the Arrhythmia dataset is too small for deep learning, only 193 training instances.

Using a Pre-trained Feature Extractor. Pre-trained feature extractors have been shown to improve
end-task results in many image applications [77]. In this experiment, we use CIFAR-10 as the
evaluation dataset. We pre-train a WRN model [90] using ImageNet after manually removing 229
classes that are similar to those classes in CIFAR-10. We experimented pre-training with HRN and 3
top performing baselines. The average result over 10 classes for each system is reported in Table 4.
Pre-training helps improve HRN drastically from 71.27 (Table 1) to 96.6 (Table 4). More details can
be found in Supplementary Materials.

Table 4: Average AUCs in % on CIFAR-10: Pre-training using ImageNet without overlapping classes

Method OCGAN ICS TQM HRN
AUC 64.8 86.6 53.5 96.6

In summary, we believe that the superior performance of HRN is due to the fact that we argued that
a key to good one-class learning is to avoid biasing any features in learning since we have no prior
information where anomalies or negative data may be and we explicitly addressed this bias problem
using H-regularization. Existing approaches did not explicitly deal with this problem.

4.4 Ablation Study and Additional Experiments

We now study the contributions of the two components of the HRN system. Here we also include
the instance normalization method in [79]. Table 3 gives the ablation results of MNIST, fMNIST
and CIFAR-10. We see that using only NLL, the model performed very poorly on all three datasets.
Including H-regularization (NLL+Hreg) improves the performance drastically. When our 2-norm
instance normalization was added (NLL+Hreg+2N_Inst_Norm), the results were improved even
further. The instance normalization method in [79] (NLL+Hreg+Inst_Norm[79]) also did fairly well,
but it is significantly poorer than HRN (NLL+Hreg+2N_Inst_Norm). This is because that the method
in [79] does not solve the problem identified in Sec. 3.2.

Square loss can also be applied in place of NLL in Eq. 3. The last two rows of Table 3 show that
square loss is better than NLL alone, but after adding Hreg+2N_Inst_Norm, NLL is slightly better.

Training with Noise. Here we study the robustness of the HRN model by assessing its performance
under noisy training data. In learning each class, we randomly sample some examples from the other
classes and add them to the training data of the class. We experimented with noise ratios: 1%, 10%,
20%. Table 5 gives the average AUC over all classes of each image dataset with different training
noise ratios. We see that HRN can maintain very good performances with high levels of noise.

Adversarial Attack. To study the robustness of HRN against adversarial attack, we follow the
DSVDD paper [68] using the ‘stop sign’ class of the German Traffic Sign Recognition Benchmark
(GTSRB) dataset, and also its setup and method of generating adversarial examples. Table 6 shows
the results of several strong models in Table 1. The results of GAN-based models are absent as [68]
observed that GANs did not converge due to the small dataset size. HRN again outperforms the best
performing baselines. Details can be found in Supplementary Materials.

8

Table 5: Average AUCs in % with different training data noise ratio for HRN.

Noise ratio MNIST fMNIST CIFAR-10
0% 97.59 92.84 71.32
1% 97.24 92.26 71.02

10% 95.01 91.72 70.78
20% 92.70 90.80 70.36

Table 6: Average AUCs in % per method on GTSRB stop sign adversarial attacks

Method DSVDD ICS TQM HRN
AUC 80.3 84.6 87.6 95.4

Table 7: Continual learning accuracy results for 1 class per task of HCL and the baselines.

Dataset w/o PFE EWC LwF IMM PGMA RPSnet OWM HCL
MNIST (10 classes) no 9.91 19.96 29.16 71.36 40.29 94.46 97.00

EMNIST-47 (47 classes) no 2.13 4.59 18.69 10.13 10.08 77.45 80.05
DBPedia (14 classes) no 7.14 7.14 7.14 9.58 36.70 92.23 93.51
DBPedia (14 tasks) yes 7.14 7.14 7.14 66.40 50.58 95.37 96.23

4.5 Continual Learning based on One-Class Classification

As mentioned in introduction, the proposed one-class learning may be applied to other learning
paradigms. Here, we use it for continual learning (CL) of a sequence of tasks incrementally, where
each task consists of one or more classes. CL mainly deals with catastrophic forgetting [57].

Our CL network (called HCL) uses a simple architecture. It consists of an optional pre-trained
Feature Extractor (PFE) (not updated in learning each new task) shared by all tasks or classes, and
Class Heads following it, one head for each class learned so far. Let the head for each class Ci be
fCi

(·). Each head is an independent one-class model using a 2-layer MLP and a single output unit.
When each new class (or task) comes, it is incrementally learned using the one-class loss (Sec. 3.1).
The number of parameters for each one-class model is very small, which ensures that adding new
tasks will not lead to a huge model. In testing, given a test instance x, we choose the head that gets
the highest fCi

(·) output value as the class of x, i.e.,
y = argmax

Ci

[fC1(xf), . . . , fCN (xf)]. (7)

where N is the total number of classes learned so far; xf is the feature obtained by the pre-trained
feature extractor: xf = F(x), or the input data x itself when PFE is not used. We have conducted
some initial experiments with one class per task continual learning.

Datasets: Two benchmark image classification datasets, MNIST [47] and EMNIST-47 [12], and
one text classification dataset DBPedia are used in our experiments.

Baselines: We compare with the following classic and the latest state-of-the-art class continual
learning (CCL) baselines that do not use saved training examples from old tasks: (1) EWC [41], (2)
LwF [50], (3) IMM [48], (4) PGMA [34], (5) RPSnet [67], and (6) OWM [91].

Results: Table 7 shows the accuracy results. HCL outperforms the baselines markedly with/without
(w/o) PFE. DBPedia uses BERT [17]) as its PFE. MNIST and EMNIST-47 do not need PFE.

5 Conclusion

Existing approaches to one-class learning using deep learning are mainly based on GAN and auto-
encoders to learn a latent representation of the given class. This paper proposed an entirely different
approach called HRN, which uses a new one-class loss function with a novel regularization method.
Combined with a 2-norm instance-level data normalization, we obtained a highly effective one-class
learning model. The architecture of HRN is also very simple. Experimental results showed its
superior performance compared to strong baselines. In our future work, we plan to investigate more
complex architectures to further improve the accuracy of the proposed HRN method, and also exploit
the one-class method for PU learning and open-world learning.

9

Acknowledgments and Disclosure of Funding

This work was partially supported by the National Key Research and Development Program of China
under grant 2018AAA0100205.

Broader Impact

One-class learning has a wide range of applications, especially in anomaly or novelty detection, e.g.,
detecting intrusions, fraud, medical anomalies, and anomalies in social networks, Internet of things,
text documents, images, and videos. Perhaps, more importantly, we believe that our holistic one-class
learning can help positive and unlabeled (PU) learning, open-world learning (or out-of-distribution
detection), and continual learning as all these learning paradigms need to face unseen/novel situations.
We have shown a continual learning application in the paper. We don’t see that anyone could be
put at disadvantage from this research. The consequence of failure of the system is that the system
recognizes some anomalies wrongly. We don’t think that the task or the method leverages biases in
the data. In fact, our proposed holistic regularization tries to avoid using any biases in the data.

References

[1] Davide Abati, Angelo Porrello, Simone Calderara, and Rita Cucchiara. Latent space autoregres-
sion for novelty detection. In CVPR, 2019.

[2] J. T. Andrews, T. Tanay, E. J. Morton, and L. D. Griffin. Transfer representation-learning for
anomaly detection. In Anomaly Detection Workshop in ICML, 2016.

[3] Fabrizio Angiulli and Clara Pizzuti. Fast outlier detection in high dimensional spaces. In
Principles of Data Mining and Knowledge Discovery, 2002.

[4] Vic Barnett and Toby Lewis, editors. Outliers in statistical data. Wiley, 1974.

[5] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks:
Reliable attacks against black-box machine learning models. arXiv preprint arXiv:1712.04248,
2017.

[6] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof: Identifying
density-based local outliers. In SIGMOD, 2000.

[7] Raghavendra Chalapathy and Sanjay Chawla. Deep learning for anomaly detection: A survey.
In arXiv:1901.03407v2 [cs.LG], 2019.

[8] Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. Anomaly detection using
one-class neural networks. In arXiv:1802.06360 [cs.LG], 2018.

[9] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. In ACM
Computing Surveys, 2009.

[10] Jinghui Chen, Saket Sathe, Charu C. Aggarwal, , and Deepak S. Turaga. Outlier detection with
autoencoder ensembles. In SDM, 2017.

[11] Zhiyuan Chen and Bing Liu. Lifelong machine learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 12(3):1–207, 2018.

[12] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre van Schaik. Emnist: an extension
of mnist to handwritten letters. http://arxiv.org/abs/1702.05373, 2017.

[13] Yang Cong, Junsong Yuan, and Ji Liu. Sparse reconstruction cost for abnormal event detection.
In CVPR, 2011.

[14] Sanjoy Dasgupta, Timothy C. Sheehan, Charles F. Stevens, and Saket Navlakha. A neural data
structure for novelty detection. In Proceedings of the National Academy of Sciences, 2018.

[15] Lucas Deecke, Robert Vandermeulen, Lukas Ruff, Stephan Mandt, and Marius Klof. Image
anomaly detection with generative adversarial networks. In ECML/PKDD, 2018.

[16] Lucas Deecke, Robert Vandermeulen, Lukas Ruff, Stephan Mandt, and Marius Kloft. Anomaly
detection with generative adversarial networks. In ECML PKDD 2018, 2019.

10

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-2019), 2019.

[18] Terrance DeVries and Graham W Taylor. Learning confidence for out-of-distribution detection
in neural networks. arXiv preprint arXiv:1802.04865, 2018.

[19] Yihe Dong, Samuel B. Hopkins, and Jerry Li. Quantum entropy scoring for fast robust mean
estimation and improved outlier detection. In NeurIPS, 2019.

[20] Sarah M Erfani, Mahsa Baktashmotlagh, Masud Moshtaghi, Vinh Nguyen, Christopher Leckie,
James Bailey, and Kotagiri Ramamohanarao. From shared subspaces to shared landmarks: A
robust multi-source classification approach. In AAAI, 2017.

[21] Sarah M Erfani, Sutharshan Rajasegarar, Shanika Karunasekera, and Christopher Leckie. High-
dimensional and largescale anomaly detection using a linear one-class svm with deep learning.
Pattern Recognition, 58:121–134, 2016.

[22] Eleazar Eskin. Anomaly detection over noisy data using learned probability distributions. In
ICML, 2000.

[23] Geli Fei and Bing Liu. Breaking the closed world assumption in text classification. In
Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 506–514, 2016.

[24] Geli Fei, Shuai Wang, and Bing Liu. Learning cumulatively to become more knowledgeable. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1565–1574, 2016.

[25] Izhak Golan and Ran El-Yaniv. Deep anomaly detection using geometric transformations. In
NeurIPS, 2018.

[26] Markus Goldstein and Seiichi Uchida. A comparative evaluation of unsupervised anomaly
detection algorithms for multivariate data. PloS one, 11(4):e0152173, 2016.

[27] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS-2014, 2014.

[28] Xiaoyi Gu, Leman Akoglu, and Alessandro Rinaldo. Statistical analysis of nearest neighbor
methods for anomaly detection. In NeurIPS, 2019.

[29] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. In Advances in neural information processing systems,
pages 5767–5777, 2017.

[30] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an
invariant mapping. In CVPR, 2006.

[31] Ville Hautamaki, Ismo Karkkainen, and Pasi Franti. Outlier detection using k-nearest neighbour
graph. In ICPR, 2004.

[32] Kaiming He, Ross Girshick, and Piotr Dollar. Rethinking imagenet pre-training.
arXiv:1811.08883v1 [cs.CV], 2018.

[33] D. Hendrycks and K. Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In ICLR, 2017.

[34] Wenpeng Hu, Zhou Lin, Bing Liu, Chongyang Tao, Zhengwei Tao, Jinwen Ma, Dongyan Zhao,
and Rui Yan. Overcoming catastrophic forgetting for continual learning via model adaptation.
In ICLR, 2019.

[35] T. Ide, D. T. Phan, and J. Kalagnanam. Multi-task multi-modal models for collective anomaly
detection. In ICDM, 2017.

[36] Vilen Jumutc and Johan AK Suykens. Multi-class supervised novelty detection. IEEE transac-
tions on pattern analysis and machine intelligence, 36(12):2510–2523, 2014.

[37] Shehroz S. Khan and Michael G. Madden. One-class classification: taxonomy of study and
review of techniques. The Knowledge Engineering Review, 29(3):345–374, 2014.

[38] JooSeuk Kim and Clayton D. Scott. Robust kernel density estimation. Journal of Machine
Learning Research, 13(1):2529–2565, 2012.

11

[39] Sangwook Kim, Yonghwa Choi, and Minho Lee. Deep learning with support vector data
description. Neurocomputing, 165:111–117, 2015.

[40] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

[41] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, and
Others. Overcoming catastrophic forgetting in neural networks. volume 114, pages 3521–3526.
National Acad Sciences, 2017.

[42] Edwin M Knorr, Raymond T Ng, and Vladimir Tucakov. Distance-based outliers: algorithms
and applications. The VLDB Journal, 8(3-4), 2000.

[43] Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek. Angle-based outlier detection in
high-dimensional data. In KDD, 2008.

[44] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report TR-2009, University of Toronto, Toronto., 2009.

[45] Atsutoshi Kumagai, Tomoharu Iwata, and Yasuhiro Fujiwara. Transfer anomaly detection by
inferring latent domain representations. In NeurIPS, 2019.

[46] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and
Radu Soricut. Albert: A lite bert for self-supervised learning of language representations.
arXiv:1909.11942v1 [cs.CL], 2019.

[47] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of handwritten
digits. http://yann.lecun.com/exdb/mnist/, 1998.

[48] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming
catastrophic forgetting by incremental moment matching. In NIPS, pages 4655–4665, 2017.

[49] W. Li, V. Mahadevan, and N. Vasconcelos. Anomaly detection and localization in crowded
scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(1):18–22, 2014.

[50] Zhizhong Li and Derek Hoiem. Learning without forgetting. PAMI, 40(12):2935–2947, 2017.

[51] Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. In ICLR, 2018.

[52] Bing Liu, Yang Dai, Xiaoli Li, Wee Sun Lee, and Philip S. Yu. Building text classifiers using
positive and unlabeled examples. In ICDM, 2003.

[53] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In ICDM, pages 413–422,
2008.

[54] Yinhan Liu, Myle Ott, Jingfei Du Naman Goyal, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[55] Larry Manevitz and Malik Yousef. One-class document classification via neural networks.
Neurocomputing, 70(7-9):1466–1481, 2007.

[56] Emaad Manzoor, Hemank Lamba, and Leman Akoglu. xstream: Outlier dete‘x’ion in feature-
evolving data streams. In KDD-2018, 2018.

[57] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of learning and motivation. 1989.

[58] HDK Moonesinghe and Pang-Ning Tan. Outrank: a graph-based outlier detection framework
using random walk. International Journal on Artificial Intelligence Tools, 17(1):19–36, 2008.

[59] Duc Tam Nguyen, Zhongyu Lou, and Michael Klarand2 Thomas Brox. Anomaly detection
with multiple-hypotheses predictions. In ICML, 2019.

[60] Guansong Pang, Longbing Cao, Ling Chen, and Huan Liu. Learning representations of ultrahigh-
dimensional data for random distance-based outlier detection. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 2041–2050,
2018.

[61] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton van den Hengel. Deep learning for
anomaly detection: A review. arXiv preprint arXiv:2007.02500, 2020.

12

[62] Guansong Pang, Chunhua Shen, and Anton van den Hengel. Deep anomaly detection with
deviation networks. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 353–362, 2019.

[63] German Ignacio Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter.
Continual lifelong learning with neural networks: A review. Neural Networks, 2019.

[64] Pramuditha Perera, Ramesh Nallapati, and Bing Xiang. Ocgan: One-class novelty detection
using gans with constrained latent representations. In CVPR, 2019.

[65] Stanislav Pidhorskyi, Ranya Almohsen, and Gianfranco Doretto. Generative probabilistic
novelty detection with adversarial autoencoders. In NeurIPS-2018, 2018.

[66] Marco A.F. Pimentel, David A. Clifton, Lei Clifton, and Lionel Tarassenko. A review of novelty
detection. Signal Processing, 99:215–249, 2014.

[67] Jathushan Rajasegaran, Munawar Hayat, Salman H Khan, Fahad Shahbaz Khan, and Ling Shao.
Random path selection for continual learning. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. dAlché Buc, E. Fox, and R. Garnett, editors, NIPS, pages 12648–12658. Curran Associates,
Inc., 2019.

[68] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui,
Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In ICML,
2018.

[69] M Sabokrou, M Fathy, and M Hoseini. Video anomaly detection and localisation based on the
sparsity and reconstruction error of auto-encoder. Electronics Letters, 52(13):1122–1124, 2016.

[70] M. Sabokrou, M. Fayyaz, M. Fathy, and R. Klette. Deep-cascade: Cascading 3d deep neural
networks for fast anomaly detection and localization in crowded scenes. IEEE Transactions on
Image Processing, 26(4):1992–2004, 2017.

[71] M. Sabokrou, M. Khalooei, M. Fathy, and E. Adeli. One-class classifier for novelty detection.
In CVPR, 2018.

[72] Mohammad Sabokrou, Mohammad Khalooei, Mahmood Fathy, and Ehsan Adeli. Adversarially
learned one-class classifier for novelty detection. In CVPR, 2018.

[73] Patrick Schlachter, Yiwen Liao, and Bin Yang. Deep one-class classification using intra-class
splitting. arXiv:1902.01194v4 [cs.LG], 2019.

[74] Thomas Schlegl, Philipp Seebock, Sebastian M. Waldstein, Ursula Schmidt-Erfurth, and Georg
Langs. Unsupervised anomaly detection with generative adversarial networks to guide marker
discovery. In IPMI, 2017.

[75] Bernhard Schölkopf, John C. Platt, John C. Shawe-Taylor, Alex J. Smola, and Robert C.
Williamson. Estimating the support of a high-dimensional distribution. In Neural Computation,
2001.

[76] Lei Shu, Hu Xu, and Bing Liu. Unseen class discovery in open-world classification.
arXiv:1801.05609, 2018.

[77] Linda Studer, Michele Alberti, Vinaychandran Pondenkandath, Pinar Goktepe, Thomas Kolonko,
Andreas Fischer, Marcus Liwicki, and Rolf Ingold. A comprehensive study of imagenet pre-
training for historical document image analysis. arXiv:1905.09113 [cs.CV], 2019.

[78] David M.J. Tax and Robert P.W. Duin. Support vector data description. Machine Learning,
54(1):45–66, 2004.

[79] Dmitry Ulyanov and Andrea Vedaldi. Instance normalization: The missing ingredient for fast
stylization. https://arxiv.org/pdf/1607.08022.pdf, 2017.

[80] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting
and composing robust features with denoising autoencoders. In ICML, 2008.

[81] Jingjing Wang, Sun Sun, and Yaoliang Yu. Multivariate triangular quantile maps for novelty
detection. In NeurIPS, 2019.

[82] Siqi Wang, Yijie Zeng, Xinwang Liu, En Zhu, Jianping Yin, Chuanfu Xu, and Marius Kloft.
Effective end-to-end unsupervised outlier detection via inlier priority of discriminative network.
In NeurIPS, 2019.

13

[83] Y. Xia, X. Cao, F. Wen, G. Hua, and J. Sun. Learning discriminative reconstructions for
unsupervised outlier removal. In CVPR, 2015.

[84] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. rXiv preprint arXiv:1708.07747, 2017.

[85] Hu Xu, Bing Liu, Lei Shu, and P Yu. Open-world learning and application to product classifica-
tion. In The World Wide Web Conference, pages 3413–3419, 2019.

[86] Huan Xu, Constantine Caramanis, and Sujay Sanghavi. Robust pca via outlier pursuit. In NIPS,
2010.

[87] Kenji Yamanishi, Jun-Ichi Takeuchi, Graham Williams, and Peter Milne. On-line unsupervised
outlier detection using finite mixtures with discounting learning algorithms. Data Mining and
Knowledge Discovery, 8(3):275–300, 2004.

[88] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019.

[89] Chong You, Daniel P Robinson, and René Vidal. Provable self-representation based outlier
detection in a union of subspaces. CVPR, 2017.

[90] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[91] Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continuous learning of context-dependent
processing in neural networks. Nature Machine Intelligence, 2019.

[92] Shuangfei Zhai, Yu Cheng, Weining Lu, and Zhongfei Zhang. Deep structured energy based
models for anomaly detection. In ICML, 2016.

[93] Panpan Zheng, Shuhan Yuan, Xintao Wu, Jun Li, and Aidong Lu. One-class adversarial nets for
fraud detection. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 1286–1293, 2019.

[94] Chong Zhou and Randy C Paffenroth. Anomaly detection with robust deep autoencoders. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 665–674, 2017.

[95] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and
Haifeng Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection.
In ICLR, 2018.

14

	Introduction
	Related Work
	Proposed HRN Model
	One-class Loss
	2-Norm Instance-Level Data Normalization

	Empirical Evaluation
	Experiment Datasets and Baselines
	Training Details and Hyper-parameter Selection
	Results and Discussion
	Ablation Study and Additional Experiments
	Continual Learning based on One-Class Classification

	Conclusion

