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FUNCTIONAL LINEAR REGRESSION ANALYSIS
FOR LONGITUDINAL DATA1
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Colorado State University, University of California, Davis,
and University of California, Davis

We propose nonparametric methods for functional linear regression
which are designed for sparse longitudinal data, where both the predictor and
response are functions of a covariate such as time. Predictor and response
processes have smooth random trajectories, and the data consist of a small
number of noisy repeated measurements made at irregular times for a sample
of subjects. In longitudinal studies, the number of repeated measurements per
subject is often small and may be modeled as a discrete random number and,
accordingly, only a finite and asymptotically nonincreasing number of mea-
surements are available for each subject or experimental unit. We propose
a functional regression approach for this situation, using functional princi-
pal component analysis, where we estimate the functional principal compo-
nent scores through conditional expectations. This allows the prediction of
an unobserved response trajectory from sparse measurements of a predictor
trajectory. The resulting technique is flexible and allows for different patterns
regarding the timing of the measurements obtained for predictor and response
trajectories. Asymptotic properties for a sample of n subjects are investigated
under mild conditions, as n → ∞, and we obtain consistent estimation for
the regression function. Besides convergence results for the components of
functional linear regression, such as the regression parameter function, we
construct asymptotic pointwise confidence bands for the predicted trajecto-
ries. A functional coefficient of determination as a measure of the variance
explained by the functional regression model is introduced, extending the
standard R2 to the functional case. The proposed methods are illustrated with
a simulation study, longitudinal primary biliary liver cirrhosis data and an
analysis of the longitudinal relationship between blood pressure and body
mass index.

1. Introduction. We develop a version of functional linear regression analy-
sis in which both the predictor and response variables are functions of some
covariate which usually but not necessarily is time. Our approach extends the
applicability of functional regression to typical longitudinal data where only very
few and irregularly spaced measurements for predictor and response functions are
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available for most of the subjects. Examples of such data are discussed in Section 5
(see Figures 1 and 6).

Since a parametric approach only captures features contained in the pre-
conceived class of functions, nonparametric methods of functional data analy-
sis are needed for the detection of new features and for the modeling of highly
complex relationships. Functional principal component analysis (FPCA) is a basic
methodology that has been studied in early work by Grenander [18] and, more re-
cently, by Rice and Silverman [27], Ramsay and Silverman [26] and many others.
Background in probability on function spaces can be found in [19]. James, Hastie
and Sugar [21] emphasized the case of sparse data by proposing a reduced rank
mixed-effects model using B-spline functions. Nonparametric methods for unbal-
anced longitudinal data were studied by Boularan, Ferré and Vieu [2] and Besse,
Cardot and Ferraty [1]. Yao, Müller and Wang [31] proposed an FPCA procedure
through a conditional expectation method, aiming at estimating functional princi-
pal component scores for sparse longitudinal data.

In the recent literature there has been increased interest in regression models
for functional data, where both the predictor and response are random functions.
Our aim is to extend the applicability of such models to longitudinal data with
their typically irregular designs, and to develop asymptotics for functional regres-
sion in sparse data situations. Practically all investigations to date are for the case
of completely observed trajectories, where one assumes either entire trajectories
or densely spaced measurements taken along each trajectory are observed; recent
work includes Cardot, Ferraty, Mas and Sarda [3], Cardot, Ferraty and Sarda [5],
Chiou, Müller, Wang and Carey [7] and Ferraty and Vieu [16].

In this paper we illustrate the potential of functional regression for complex lon-
gitudinal data. In functional data settings, Cardot, Ferraty and Sarda [4] provided
consistency results for the case of linear regression with a functional predictor and
scalar response, where the predictor functions are sampled at a regular grid for
each subject, and Cardot, Ferraty and Sarda [4] discussed inference for the regres-
sion function. The case of a functional response was introduced by Ramsay and
Dalzell [25], and for a summary of this and related work we refer to Ramsay and
Silverman ([26], Chapter 11) and to Faraway [15] for a discussion of relevant prac-
tical aspects. The theory for the case of fixed design and functional response in the
densely sampled case was investigated by Cuevas, Febrero and Fraiman [8]. Chiou,
Müller and Wang [6] studied functional regression models where the predictors are
finite-dimensional vectors and the response is a function, using a quasi-likelihood
approach. Applications of varying-coefficient modeling to functional data, includ-
ing asymptotic inference, were presented in [13] and [14].

The proposed functional regression approach is flexible, and allows for varying
patterns of timing in regard to the measurements of predictor and response func-
tions. This is relevant since it is a common occurrence in longitudinal data settings
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that the measurement of either the predictor or response is missing. The contribu-
tions of this paper are as follows: First, we extend the functional regression ap-
proach to longitudinal data, using a conditioning idea. This leads to improved pre-
diction of the response trajectories, given sparse measurements of the predictor tra-
jectories. Second, we provide a complete practical implementation of the proposed
functional regression procedure and illustrate its utility for two longitudinal stud-
ies. Third, we obtain the asymptotic consistency of the estimated regression func-
tion of the functional linear regression model for the case of sparse and irregular
data, including rates. Fourth, we construct asymptotic pointwise confidence bands
for predicted response trajectories based on asymptotic distribution results. Fifth,
we introduce a consistent estimator for a proposed measure of association between
the predictor and response functions in functional regression models that provides
an extension of the coefficient of determination R2 in standard linear model theory
to the functional case. The proposed functional coefficient of determination pro-
vides a useful quantification of the strength of the relationship between response
and predictor functions, as it can be interpreted in a well-defined sense as the frac-
tion of variance explained by the functional linear regression model, in analogy to
the situation for the standard linear regression model.

The paper is organized as follows. In Section 2 we introduce basic notions, the
functional linear regression model, and describe the estimation of the regression
function. In Section 3 we discuss the extension of the conditioning approach to
the prediction of response trajectories in functional regression under irregular and
sparse data. Pointwise confidence bands and the functional coefficient of deter-
mination R2 are also presented in Section 3. Simulation results that illustrate the
usefulness of the proposed method can be found in Section 4. This is followed by
applications of the proposed functional regression approach to longitudinal PBC
liver cirrhosis data and an analysis of the longitudinal relationship between blood
pressure and body mass index, using data from the Baltimore Longitudinal Study
on Aging in Section 5. Asymptotic consistency and distribution results are pro-
vided in Section 6, while proofs and auxiliary results are compiled in the Appen-
dix.

2. Functional linear regression for sparse and irregular data.

2.1. Representing predictor and response functions through functional prin-
cipal components. The underlying but unobservable sample consists of pairs
of random trajectories (Xi, Yi), i = 1, . . . , n, with square integrable predictor
trajectories Xi and response trajectories Yi . These are realizations of smooth
random processes (X,Y ), with unknown smooth mean functions EY(t) =
µY (t), EX(s) = µX(s), and covariance functions cov(Y (s), Y (t)) = GY (s, t),
cov(X(s),X(t)) = GX(s, t). We usually refer to the arguments of X(·) and Y(·)
as time, with finite and closed intervals S and T as domains. We assume the
existence of orthogonal expansions of GX and GY (in the L2 sense) in terms
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of eigenfunctions ψm and φk with nonincreasing eigenvalues ρm and λk , that is,
GX(s1, s2) = ∑

ρmψm(s1)ψm(s2), t, s ∈ S, and GY (t1, t2) = ∑
k λkφk(t1)φk(t2),

t1, t2 ∈ T .
We model the actually observed data which consist of sparse and irregular re-

peated measurements of the predictor and response trajectories Xi and Yi , contam-
inated with additional measurement errors (see [28, 30]). To adequately reflect the
irregular and sparse measurements, we assume that there is a random number of Li

(resp. Ni ) random measurement times for Xi (resp. Yi) for the ith subject, which
are denoted as Si1, . . . , SiLi

(resp. Ti1, . . . , TiNi
). The random variables Li and Ni

are assumed to be i.i.d. as L and N respectively, where L and N may be correlated
but are independent of all other random variables. Let Uil (resp. Vij ) denote the
observation of the random trajectory Xi (resp. Yi ) at a random time Sil (resp. Tij ),
contaminated with measurement errors εil (resp. εij ), 1 ≤ l ≤ Li , 1 ≤ j ≤ Ni ,
1 ≤ i ≤ n. The errors are assumed to be i.i.d. with Eεil = 0, E[ε2

il] = σ 2
X (resp.

Eεij = 0, E[ε2
ij ] = σ 2

Y ), and independent of functional principal component scores

ζim (resp. ξik) that satisfy Eζim = 0, E[ζimζim′ ] = 0 for m �= m′, E[ζ 2
im] = ρm

(resp. Eξik = 0, E[ξikξik′ ] = 0 for k �= k′, E[ξ2
ik] = λk). Then we may represent

predictor and response measurements as follows:

Uil = Xi(Sil) + εil

(1)

= µX(Sil) +
∞∑

m=1

ζimψm(Sil) + εil, Sil ∈ S,1 ≤ i ≤ n,1 ≤ l ≤ Li,

Vij = Yi(Tij ) + εij

(2)

= µY (Tij ) +
∞∑

k=1

ξikφk(Tij ) + εij , Tij ∈ T ,1 ≤ i ≤ n,1 ≤ j ≤ Ni.

We note that the response and predictor functions do not need to be sampled simul-
taneously, extending the applicability of the proposed functional regression model.

2.2. Functional linear regression model and estimation of the regression func-
tion. Consider a functional linear regression model in which both the predictor X

and response Y are smooth random functions,

E[Y(t)|X] = α(t) +
∫
S
β(s, t)X(s) ds.(3)

Here the bivariate regression function β(s, t) is smooth and square integrable,
that is,

∫
T

∫
S β2(s, t) ds dt < ∞. Centralizing X(t) by Xc(s) = X(s) − µX(s),

and observing E[Y(t)] = µY (t) = α(t) + ∫
S β(s, t)µX(s) ds, the functional linear

regression model becomes

E[Y(t)|X] = µY (t) +
∫
S
β(s, t)Xc(s) ds.(4)
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Our aim is to predict an unknown response trajectory based on sparse and noisy
observations of a new predictor function. This is the functional version of the clas-
sical prediction problem in a linear model where, given a set of predictors X, one
aims to predict the mean response Y by estimating E(Y |X) (see [12], page 81).
An important step is to estimate the regression function β(s, t). We use the fol-
lowing basis representation of β(s, t), which is a consequence of the population
least squares property of conditional expectation and the fact that the predictors are
uncorrelated, generalizing the representation β1 = cov(X,Y )/var(X) of the slope
parameter in the simple linear regression model E(Y |X) = β0 + β1X to the func-
tional case. This representation holds under certain regularity conditions which are
outlined in [20] and is given by

β(s, t) =
∞∑

k=1

∞∑
m=1

E[ζmξk]
E[ζ 2

m] ψm(s)φk(t).(5)

The convergence of the right-hand side of (5) is discussed in Lemma A.2 (Ap-
pendix A.3). When referring to β , we always assume that the limit (5) exists in
an appropriate sense. In a first step, smooth estimates of the mean and covari-
ance functions for the predictor and response functions are obtained by scatterplot
smoothing; see (30) and (31) in Appendix A.2. Then a nonparametric FPCA step
yields estimates ψ̂m, φ̂k for the eigenfunctions, and ρ̂m, λ̂k for the eigenvalues of
predictor and response functions; see (33) below.

We use two-dimensional scatterplot smoothing to obtain an estimate Ĉ(s, t) of
the cross-covariance surface C(s, t), s ∈ S, t ∈ T ,

C(s, t) = cov
(
X(s), Y (t)

) =
∞∑

k=1

∞∑
m=1

E[ζmξk]ψm(s)φk(t).(6)

Let Ci(Sil, Tij ) = (Uil − µ̂X(Sil))(Vij − µ̂Y (Tij )) be “raw” cross-covariances that
serve as input for the two-dimensional smoothing step; see (36) in Appendix A.2.
The smoothing parameters in the two coordinate directions can be chosen inde-
pendently by one-curve-leave-out cross-validation procedures [27]. From (6) we
obtain estimates for σkm = E[ζmξk],

σ̂km =
∫
T

∫
S
ψ̂m(s)Ĉ(s, t)φ̂k(t) ds dt,

(7)
m = 1, . . . ,M, k = 1, . . . ,K.

With estimates (33), the resulting estimate for β(s, t) is

β̂(s, t) =
K∑

k=1

M∑
m=1

σ̂km

ρ̂m

ψ̂m(s)φ̂k(t).(8)

In practice, the numbers M and K of included eigenfunctions can be chosen by
one-curve-leave-out cross-validation (34), or by an AIC type criterion (35). For the
asymptotic analysis, we consider M(n),K(n) → ∞ as the sample size n → ∞.
Corresponding convergence results can be found in Theorem 1.
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3. Prediction and inference.

3.1. Predicting response trajectories. One of our central aims is to predict the
trajectory Y ∗ of the response for a new subject from sparse and irregular mea-
surements of the predictor trajectory X∗. In view of (4), the basis representation
of β(s, t) in (5) and the orthonormality of the {ψm}m≥1, the prediction of the re-
sponse function would be obtained via the conditional expectation

E[Y ∗(t)|X∗] = µY (t) +
∞∑

k=1

∞∑
m=1

σkm

ρm

ζ ∗
mφk(t),(9)

where ζ ∗
m = ∫

S(X∗(s) − µX(s))ψm(s) ds is the mth functional principal compo-
nent score of the predictor trajectory X∗. The quantities µY , φk , σkm and ρm can
be estimated from the data, as described above. It remains to discuss the estima-
tion of ζ ∗

m, and for this step we invoke Gaussian assumptions in order to handle the
sparsity of the data.

Let U∗
l be the lth measurement made for the predictor function X∗ at time S∗

l ,
according to (1), where l = 1, . . . ,L∗, with L∗ a random number. Assume that the
functional principal component scores ζ ∗

m and the measurement errors ε∗
l for the

predictor trajectories are jointly Gaussian. Following Yao, Müller and Wang [31],
the best prediction of the scores ζ ∗

m is then obtained through the best linear pre-
diction, given the observations Ũ∗ = (U∗

1 , . . . ,U∗
L∗), and the number and loca-

tions of these observations, L∗ and S∗ = (S∗
1 , . . . , S∗

L∗)T . Let X∗(S∗
l ) be the value

of the predictor function X∗ at time S∗
l . Write X̃∗ = (X∗(S∗

1 ), . . . ,X∗(S∗
L∗))T ,

µ∗
X = (µX(S∗

1 ), . . . ,µX(S∗
L∗))T and ψ∗

m = (ψm(S∗
1 ), . . . ,ψm(S∗

L∗))T . Then the
best linear prediction for ζ ∗

m is

ζ̃ ∗
m = ρmψ∗

m
T
�−1

U∗ (Ũ∗ − µ∗
X),(10)

where �U∗ = cov(Ũ∗|L∗, S∗) = cov(X̃∗|L∗, S∗) + σ 2
XIL∗ , IL∗ being the L∗ × L∗

identity matrix, that is, the (j, l) entry of the L∗ × L∗ matrix �U∗ is (�U∗)j,l =
GX(Sij , Sil) + σ 2

Xδjl with δjl = 1 if j = l and 0 if j �= l.
According to (10), estimates for the functional principal component scores

ζ ∗
m are obtained by substituting estimates of µ∗

X , ρm and ψ∗
m that are based on

the entire data collection, leading to

ζ̂ ∗
m = ρ̂mψ̂∗T

m �̂−1
U∗ (Ũ∗ − µ̂∗

X),(11)

where (�̂U∗)jl = ĜX(Sij , Sil) + σ̂ 2
Xδjl . The predicted trajectory is then obtained

as

Ŷ ∗
KM(t) = µ̂Y (t) +

K∑
k=1

M∑
m=1

σ̂km

ρ̂m

ζ̂ ∗
mφ̂k(t).(12)

In the sparse situation, the Gaussian assumption is crucial. It allows us to obtain
the best linear predictors in (10)–(12) through conditional expectations, borrowing
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strength from the entire sample and thus compensating for the sparseness of data
for individual trajectories. Simulation results, reported in Section 4, indicate that
the proposed method is quite robust regarding the Gaussian assumption. Theoreti-
cal results for predicted trajectories (12) are given in Theorem 2.

3.2. Asymptotic pointwise confidence bands for response trajectories. We
construct asymptotic confidence bands for the response trajectory Y ∗(·) of a
new subject, conditional on the sparse and noisy measurements that are avail-
able for the underlying predictor function. For M ≥ 1, let ζ ∗M = (ζ ∗

1 , . . . , ζ ∗
M)T ,

ζ̃ ∗M = (ζ̃ ∗
1 , . . . , ζ̃ ∗

M)T , where ζ̃ ∗
m is as in (10), and define the M × L∗ matrix

H = cov(ζ ∗M, Ũ∗|L∗, S∗) = (ρ1ψ
∗
1 , . . . , ρMψ∗

M)T . The covariance matrix of ζ̃ ∗M

is cov(ζ̃ ∗M |L∗, S∗) = H�−1
U∗HT . Because ζ̃ ∗M = E[ζ ∗M |Ũ∗,L∗, S∗] is the pro-

jection of ζ ∗M on the space spanned by the linear functions of Ũ∗ given L∗ and S∗,
cov(ζ̃ ∗M − ζ ∗M |L∗, S∗) = cov(ζ ∗M |L∗, S∗) − cov(ζ̃ ∗M |L∗, S∗) ≡ �M , where
�M = D − H�−1

U∗HT , and D = diag{ρ1, . . . , ρM}. Under the Gaussian assump-
tion and conditioning on L∗ and S∗, then ζ̃ ∗M − ζ ∗M ∼ N (0,�M).

To construct pointwise bands for E[Y ∗(t)|X∗] = µY (t) + ∑∞
m=1

∑∞
k=1 σkm ×

φk(t)ζ̃
∗
m/ρm, let �̂M = D̂ − Ĥ �̂−1

U∗ Ĥ T , where D̂ = diag{ρ̂1, . . . , ρ̂M} and Ĥ =
(ρ̂1ψ̂

∗
1 , . . . , ρ̂Mψ̂∗

M)T . Define φtM = (φ1(t), . . . , φM(t))T for t ∈ T , and a K × M

matrix PK,M = (σkm/ρm)1≤k≤K,1≤m≤M . Let φ̂tK , P̂K,M be the estimates of φtK ,
PKM obtained from the data. Write the prediction in the vector form Ŷ ∗

KM(t) =
µ̂Y (t) + φ̂T

tKP̂M,K ζ̂ ∗M . Theorem 3 in Section 6 establishes that the asymptotic
distribution of {Ŷ ∗

KM(t)−E[Y ∗(t)|X∗]} conditional on L∗ and S∗ can be approxi-
mated by N (0, φ̂T

tKP̂KM�̂MP̂ T
KMφ̂tK). As a consequence, the (1 − α) asymptotic

pointwise interval for E[Y ∗(t)|X∗], the mean response at predictor level X∗, is
given by

Ŷ ∗
K,M(t) ± �(1 − α/2)

√
φ̂T

tKP̂KM�̂MP̂ T
KMφ̂tK,(13)

where � is the standard Gaussian c.d.f.

3.3. Coefficients of determination for functional linear regression. In standard
linear regression, a measure to quantify the “degree of linear association” between
predictor and response variables is the coefficient of determination R2 (e.g., [12],
page 138). The coefficient of determination plays an important role in applications
of regression analysis, as it may be interpreted as the fraction of variation of the
response that is explained by the regression relation. Accordingly, R2 is commonly
used as a measure of the strength of the regression relationship.

The proposed extension to functional linear regression can be motivated by the
standard linear regression model with a response Y and a predictor X, where
the coefficient of determination R2 is defined by R2 = var(E[Y |X])/var(Y ).
This corresponds to the fraction of var(Y ) = var(E[Y |X]) + E(var([Y |X])) that
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is explained by the regression. In the functional setting, the regression function
is given by (3), E[Y(t)|X] = ∫

S β(s, t)X(s) ds. To measure the global linear
association between the functional predictor X and the functional response Y ,
we consider the total variation of Y explained by the regression function to be∫
T var(E[Y(t)|X]) dt , and by observing (9) and the orthonormality properties of

{φk} and {ψm}, one obtains∫
T

var
(
E[Y(t)|X])dt =

∞∑
k,m=1

σ 2
km/ρm.(14)

The analogous notion of total variation of Y is
∫
T var(Y (t)) dt = ∫

T GY (t, t) dt =∑∞
k=1 λk . This motivates a functional version of R2,

R2 =
∫
T var(E[Y(t)|X]) dt∫

T var(Y (t)) dt
=

∑∞
k,m=1 σ 2

km/ρm∑∞
k=1 λk

.(15)

Since var(E[Y |X]) ≤ var(Y ) for random variables X,Y , it follows that∫
T var(E[Y(t)|X]) dt ≤ ∫

T var(Y (t)) dt , that is,
∑∞

m,k=1 σ 2
mk/ρm ≤ ∑∞

k=1 λk < ∞.
Thus, the functional R2 (15) always satisfies 0 ≤ R2 ≤ 1.

Another interpretation of the functional coefficient of determination R2 (15) is
as follows: Denoting by R2

km the coefficients of determination of the simple linear
regressions of the functional principal component scores ξk on ζm, 1 ≤ k,m < ∞,
one finds R2

km = σ 2
km/(ρmλk), and R2

k = ∑∞
m=1 R2

km is the coefficient of deter-
mination of regressing ξk on all ζm, m = 1,2, . . . , simultaneously, by succes-
sively adding predictors ζm into the regression equation and observing that R2

k

is obtained as the sum of the R2
km, as the predictors ζm are uncorrelated. Then

R2 = ∑∞
k=1 λkR

2
k/(

∑∞
k=1 λk) is seen to be a weighted average of these R2

k , with
weights provided by the λk . According to (15), a natural estimate R̂ 2 for the func-
tional coefficient of determination R2 is

R̂ 2 =
∑K

k=1
∑M

m=1 σ̂ 2
km/ρ̂m∑K

k=1 λ̂k

,(16)

where σ̂km are as in (7).
Besides the functional R2 (15) that provides a global measure of the linear

association between processes X and Y , we also propose a local version of a
functional coefficient of determination. The corresponding function R2(t) may
be considered a functional extension of the local R2 measure that has been in-
troduced in [10] and [11]. As shown above, for fixed t ∈ T , the variation of Y(t)

explained by the predictor process X is determined by var(E[Y(t)|X])/var(Y (t)).
This motivates the following definition of a pointwise functional coefficient of de-
termination R2(t):

R2(t) = var(E[Y(t)|X])
var(Y (t))

=
∑∞

m=1
∑∞

k,�=1 σkmσ�mφk(t)φ�(t)/ρm∑∞
k=1 λkφ

2
k (t)

.(17)
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Note that R2(t) satisfies 0 ≤ R2(t) ≤ 1 for all t ∈ T .
A second option to obtain an overall R2 value is to extend the pointwise mea-

sure R2(t) to a global measure by taking its integral, which leads to an alternative
definition of the global functional coefficient of determination, denoted by R̃ 2,

R̃ 2 = 1

|T |
∫
T

var(E[Y(t)|X])
var(Y (t))

dt

(18)

= 1

|T |
∫
T

∑∞
m=1

∑∞
k,�=1 σkmσ�mφk(t)φ�(t)/ρm∑∞

k=1 λkφ
2
k (t)

dt,

where |T | denotes the length of the time domain T . Natural estimates of R2(t)

and R̃ 2 are given by

R̂ 2(t) =
∑M

m=1
∑K

k,�=1 σ̂kmσ̂�mφ̂k(t)φ̂�(t)/ρ̂m∑K
k=1 λ̂kφ̂

2
k (t)

,(19)

̂̃R2 = 1

|T |
∫
T

∑M
m=1

∑K
k,�=1 σ̂kmσ̂�mφ̂k(t)φ̂�(t)/ρ̂m∑K

k=1 λ̂kφ̂
2
k (t)

dt.(20)

We refer to Section 5 for further discussion of R2, R2(t) and R̃ 2 in applications
and to Theorem 4 in Section 6 regarding the asymptotic convergence of these esti-
mates.

4. Simulation studies. Simulation studies were based on 500 i.i.d. normal
and 500 i.i.d. mixture samples, where 100 pairs of response and predictor trajecto-
ries were generated for each sample. Emulating very sparse and irregular designs,
each pair of response and predictor functions was observed at different sets of time
points. The number of measurements was randomly chosen for each predictor and
each response trajectory, with equal probability from {3,4,5} for Xi uniformly,
and independently chosen from {3,4,5} for Yi uniformly, also with equal probabil-
ity. This setup reflects very sparse designs with at most five observations available
per subject. Once their numbers were determined, the locations of the measure-
ments were uniformly distributed on [0,10] for both Xi and Yi , respectively.

The predictor trajectories Xi and associated sparse and noisy measurements Uil

(1) were generated as follows. The simulated processes X had the mean function
µX(s) = s+sin(s), with covariance function constructed from two eigenfunctions,
ψ1(s) = − cos(πs/10)/

√
5 and ψ2(s) = sin(πs/10)/

√
5, 0 ≤ s ≤ 10. We chose

ρ1 = 2, ρ2 = 1 and ρm = 0, m ≥ 3, as eigenvalues, and σ 2
X = 0.25 as the variance

of the additional measurement errors εil in (1), which were assumed to be normal
with mean 0. For the 500 normal samples, the FPC scores ζim (m = 1,2) were
generated from N (0, ρm), while the ζim for the nonnormal samples were gener-
ated from a mixture of two normals, N (

√
ρm/2, ρm/2) with probability 1/2 and



2882 F. YAO, H.-G. MÜLLER AND J.-L. WANG

N (−√
ρm/2, ρm/2), also with probability 1/2.

For the response trajectories, letting b11 = 2, b12 = 2, b21 = 1, b22 = 2,
the regression function was β(s, t) = ∑2

k=1
∑2

m=1 bkmψm(s)ψk(t), t, s ∈ [0,10],
and the response trajectories were E[Yi(t)|Xi] = ∫ 10

0 β(s, t)Xi(s) ds. Only the
sparse and noisy observations Vij = E[Yi(Tij )|Xi] + εij (2) were available
for response trajectories, contaminated with pseudo-i.i.d. errors εij with den-
sity N (0,0.1).

We investigated predicting response curves for new subjects. For each Monte
Carlo simulation run, we generated 100 new predictor curves X∗

i , with noisy mea-
surements taken at the same random time points as Xi , and 100 associated response
curves E[Y ∗

i |X∗
i ]. Relative mean squared prediction error was used as an evalua-

tion criterion, given by

RMSPE = 1

n

n∑
i=1

∫ 10

0

{Ŷ ∗
i,KM(t) − E[Y ∗

i (t)|X∗
i ]}2 dt∫ 10

0 {E[Y ∗
i (t)|X∗

i ]}2 dt
,(21)

where predicted trajectories Ŷ ∗
i,KM were obtained according to (11) and (12).

This method is denoted as CE in Table 1, and was compared with a “classical”
functional regression approach that was also based on (12), but with the con-

ditional expectation replaced by the integral approximation ζ̂ ∗I
im = ∑L∗

i

l=1(U
∗
il −

µ̂X(S∗
il))ψ̂m(S∗

il)(S
∗
il − S∗

i,l−1), denoted by IN in Table 1. The numbers of eigen-
functions K and M were chosen by the AIC criterion (35), separately for each
simulation. We also included the case of irregular but nonsparse data, where the
random numbers of the repeated measurements were chosen from {20, . . . ,30} for
both Xi and Yi with equal probability. From the results in Table 1, we see that, for
sparse data, the CE method improves the prediction errors by 57%/60% for nor-
mal/mixture distributions, while the gains for nonsparse data are not as dramatic,
but nevertheless present. The CE method emerges as superior for the sparse data
case.

TABLE 1
Results of 500 Monte Carlo runs with n = 100 trajectories per

sample. Shown are medians of observed squared prediction
errors, RMSPE (21). Here CE is the conditional expectation
method (11), (12) and IN stands for integral approximation

Regression Normal Mixture

CE 0.0083 0.0081Sparse IN 0.0193 0.0204

CE 0.0057 0.0062Nonsparse IN 0.0078 0.0079
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5. Applications.

5.1. Primary biliary cirrhosis data. Primary biliary cirrhosis [23] is a rare but
fatal chronic liver disease of unknown cause, with a prevalence of about 50 cases
per million population. The data were collected between January 1974 and May
1984 by the Mayo Clinic (see also Appendix D of [17]). The patients were sched-
uled to have measurements of blood characteristics at six months, one year and
annually thereafter post diagnosis. However, since many individuals missed some
of their scheduled visits, the data are sparse and irregular with unequal numbers of
repeated measurements per subject and also different measurement times Tij per
individual.

To demonstrate the usefulness of the proposed methods, we explore the dy-
namic relationship between albumin in mg/dl (predictor) and prothrombin time
in seconds (response), which are both longitudinally measured. We include 137
female patients, and the measurements of albumin level and prothrombin time be-
fore 2500 days. For both albumin and prothrombin time, the number of observa-
tions ranged from 1 to 10, with a median of 5 measurements per subject. Individual
trajectories of albumin and prothrombin time are shown in Figure 1.

The smooth estimates of the mean function for both albumin and prothrombin
time are also displayed in Figure 1, indicating opposite trends. The AIC criterion
leads to the choice of two eigenfunctions for both predictor and response func-
tions, and smooth eigenfunction estimates are presented in Figure 2. For both al-
bumin and prothrombin time, the first eigenfunction reflects an overall level, and
the second eigenfunction a contrast between early and late times. The estimate of
the regression function β is displayed in Figure 3. Its shape implies that, for the
prediction of early prothrombin times, late albumin levels contribute positively,

FIG. 1. Left panel: Observed individual trajectories (solid ) and the smooth estimate of the mean
function for albumin (thick solid ). Right panel: Corresponding observed individual trajectories
(solid ) and the smooth estimate of the mean function for prothrombin time (thick solid ), for the
primary biliary cirrhosis (PBC) data.
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FIG. 2. Left panel: Smooth estimates of the first (solid ) and second (dashed ) eigenfunctions for
albumin, accounting for 87% and 8% of total variation. Right panel: Smooth estimates of the first
(solid ) and second (dashed ) eigenfunctions for prothrombin time, accounting for 54% and 33% of
total variation, for the PBC data.

FIG. 3. Estimated regression function (8), where the predictor (albumin) time is s (in days), and
the response ( prothrombin) time is t (in days), for the PBC data.
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while early levels contribute negatively, whereas the prediction of late prothrom-
bin times is based on a sharper contrast with highly positive weighting of early
albumin levels and negative weighting of later levels.

We randomly selected four patients from the sample for which the trajectory of
prothrombin time was to be predicted solely from the sparse and noisy albumin
measurements. For this prediction, the data of each subject to be predicted were
omitted, the functional regression model was fitted from the remaining subjects,
and then the predictor measurements were entered into the fitted model to obtain
the predicted response trajectory, thus leading to genuine predictions. Predicted
curves and 95% pointwise confidence bands are shown in Figure 4. Note that these
predictions of longitudinal trajectories are based on just a few albumin measure-
ments, and the prothrombin time response measurements shown in the figures are
not used.

Regarding the functional coefficients of determination R2 (15) and R̃ 2 (18), we
obtain very similar estimates, R̂ 2 = 0.37 and ̂̃R 2 = 0.36, which we would inter-

FIG. 4. Observed values (circles) for prothrombin times (not used for prediction), predicted curves
(solid ) and 95% pointwise bands (dashed ), for four randomly selected patients, where bands and
predicted curves are based on one-curve-leave-out analysis and sparse noisy albumin measurements
(not shown) of the predictor function.
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FIG. 5. Estimated pointwise coefficient of determination R̂ 2(t) (19) as a function of time t for the
PBC data (left panel, time is duration of study in days) and for the BLSA data (right panel, time is
age in years).

pret to mean that about 36% of the total functional variation of the prothrombin
time trajectories is explained by the albumin data, indicating a reasonably strong
functional regression relationship. The curve of estimated pointwise coefficients
of determination R̂ 2(t) (19) is shown in Figure 5, left panel, which describes the
trend of the proportion of the variation of the prothrombin time, at each argument
value, that is explained by the entire albumin trajectories. We find that the obser-
vations in the second half are better determined by the albumin trajectories than
the values in the first half of the domain of prothrombin time.

5.2. Functional regression of systolic blood pressure on body mass index. As
a second example, we discuss a functional regression analysis of systolic blood
pressure trajectories (responses) on body mass index trajectories (predictor), using
anonymous data from the Baltimore Longitudinal Study of Aging (BLSA), a major
longitudinal study of human aging [29]. The data consist of 1590 male volunteers
who were scheduled to visit the Gerontology Research Center bi-annually. Time
corresponds to age of each subject and is measured in years. On each visit, systolic
blood pressure (in mm Hg) and body mass index (BMI = weight in kg/height
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in m2) were assessed. Since both measurements are highly variable, the data are
noisy, and as many participants missed scheduled visits, or were seen at other
than the scheduled times, the data are sparse with largely unequal numbers of
repeated measurements and widely differing measurement times per subject. More
details about the study and data can be found in [24], and for previous statistical
approaches, we refer to [22].

We included the participants with measurements within the age range [60,80],
and first checked for outliers based on standardized residuals of body mass index
(BMI) and systolic blood pressure (SBP), respectively. The standardized residuals
are defined as residuals divided by the pooled sample standard deviation, where
residuals are the differences between measurements and the estimated mean func-
tion obtained by scatterplot smoothing, using the local linear smoother. We ex-
cluded subjects with standardized residuals larger (or less) than ±3, for either
BMI or SBP. Individual trajectories of BMI and SBP for the included 812 sub-
jects are shown in Figure 6, along with the smooth estimated mean functions

FIG. 6. Left panel: Observed individual trajectories (solid ) and the smooth estimate of the mean
function (thick solid ) for body mass index (BMI). Right panel: Corresponding observed individual
trajectories (solid ) and the smooth estimate of the mean function (thick solid ) for systolic blood
pressure (SBP), for the BLSA data.
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of BMI and SBP.
While average BMI decreases after age 64, SBP throughout shows an increasing

trend. Based on the AIC criterion, three eigenfunctions are used for the predictor
(BMI) function, and four for the response (SBP) function; these are displayed in
Figure 7. The first eigenfunctions of both processes correspond to an overall mean
effect, and the second eigenfunctions to a contrast between early and late ages,
with further oscillations reflected in third and fourth eigenfunctions.

The estimated regression function in Figure 8 indicates that a contrast between
late and early BMI levels forms the prediction of SBP levels at later ages, where
late BMI levels are weighted positive and early levels negative. When predicting
SBP at age 80, the entire BMI trajectory matters, and rapid overall declines in BMI
lead to the lowest SBPs, where speed of decline between 60 and 65 and between
75 and 80 is critical. Similar patterns can be identified for predicting SBP at other
ages. As in the previous example, we randomly select four study participants and
obtain predictions and 95% pointwise bands for each of these, based on one-leave-
out functional regression analysis (Figure 9). The predicted trajectories are found
to be reasonably close to the observations, which are not used in the analysis.

The functional coefficients of determination R2 (15) and R̃ 2 (18) were both es-
timated as 0.13, indicating that the dynamics of body mass index explains 13% of
the total variation of systolic blood pressure trajectories; the functional regression
relationship is seen to be weaker than in the previous example. The curve of esti-
mated pointwise coefficients of determination R2(t) (17) is displayed in Figure 5,
right panel, indicating generally weaker linear association at older ages (beyond
70 years) as compared to the earlier ages (60 to 70 years). The minimal linear
association between predictor trajectories and the functional response is seen to
occur around age 75.7.

FIG. 7. Left panel: Smooth estimates of the first (solid ), second (dashed ) and third (dash-dot)
eigenfunctions for BMI, accounting for 90%, 6% and 3% of total variation. Right panel: Smooth
estimates of the first (solid ), second (dashed ), third (dash-dot) and fourth (dotted ) eigenfunctions
for SPB, accounting for 76%, 15%, 4% and 2% of total variation, for the BLSA data.



FUNCTIONAL REGRESSION ANALYSIS 2889

FIG. 8. Estimated regression function (8), where the predictor (BMI) time is s (in years), and the
response (SBP) time is t (in years), for the BLSA data.

6. Asymptotic properties. In this section we present the consistency of the
regression function estimate (8) in Theorem 1. The consistency of predicted tra-
jectories is reflected in Theorem 2, and the asymptotic distributions of predicted
trajectories in Theorem 3. The proposed functional coefficient of determination
R̂ 2 (16) is shown to be consistent for R2 (15) in Theorem 4.

In what follows, we only consider the case that the processes X and Y are
infinite-dimensional. If they are finite-dimensional and there exist true finite
K and M , such that GX and GY are finite-dimensional surfaces, then, as n tends
to infinity, remainder terms such as θn and ϑn in (41) will disappear. Appropriately
modified versions of the following theoretical results still hold. Since in this case
the true K and M are finite, most of the technical assumptions that are needed
to handle the infinite case would not be needed, such as (A1)–(A3), (A6)–(A7)
and (B5), and K(n),M(n) would be assumed to converge to the true K and M

instead of infinity, as n → ∞.
To define the convergence of the right-hand side of (5) in the L2 sense, we

require that

(A1)
∑∞

k=1
∑∞

m=1 σ 2
km/ρ2

m < ∞.
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FIG. 9. Observed values (circles) of systolic blood pressure (SBP) that are not used for the pre-
diction, predicted curves (solid ) and 95% pointwise bands (dashed ), for four randomly selected
patients, where bands and predicted curves are based solely on sparse and noisy measurements of
the predictor function (BMI, not shown).

Furthermore, the right-hand side of (5) converges uniformly on S × T , provided
that

(A2) γ (s, t) = ∑∞
k=1

∑∞
m=1 |σkmψm(s)φk(t)|/ρm is continuous in s and t , and the

function βKM(s, t) = ∑K
k=1

∑M
m=1 σkmψm(s)φk(t)/ρm absolutely converges

to β(s, t) for all s ∈ S, t ∈ T as M,K → ∞.

The numbers M = M(n) and K = K(n) of included eigenfunctions are integer-
valued sequences that depend on the sample size n; see assumption (B5) in Ap-
pendix A.1. For simplicity, we suppress the dependency of M and K on n in the
notation. The consistency of β̂ (8) is obtained as follows.

THEOREM 1. Under (A1) and the assumptions of Lemma A.1 and (B5) (see
Appendix A.1),

lim
n→∞

∫
T

∫
S
[β̂(s, t) − β(s, t)]2 ds dt = 0 in probability,(22)
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and if (A1) is replaced with (A2),

lim
n→∞ sup

(s,t)∈S×T
|β̂(s, t) − β(s, t)| = 0 in probability.(23)

The rate of convergence in (22) and (23) depends on specific properties of
processes X and Y in the following way: If τn, υn and ςn are defined as in (B.5)
of Appendix A.1, and θn, ϑn are defined as in (41) in Appendix A.2, then, for (22)
we obtain the rate∫

T

∫
S
[β̂(s, t) − β(s, t)]2 ds dt = Op(τn + υn + ςn + θn),

and for (23) the rate is

sup
(s,t)∈S×T

|β̂(s, t) − β(s, t)| = Op(τn + υn + ςn + ϑn),

as n → ∞. Here ςn depends on bandwidths h1 and h2 that are used in the smooth-
ing step (36) for the cross-covariance function C(s, t) = cov(X(s), Y (t)). These
rates depend on specific properties of the processes X and Y , such as the spac-
ings of the eigenvalues of their autocovariance operators. We note that, due to the
sparsity of the data (at most, finitely many observations are made per random tra-
jectory), fast rates of convergence cannot be expected in this situation, in contrast
to the case where entire trajectories are observed or are densely sampled.

Recall that Y ∗
KM(t) = µY (t) + ∑K

k=1
∑M

m=1 σkmφk(t)ζ
∗
m/ρm, and the prediction

Ŷ ∗
KM(t) = µ̂Y (t)+∑K

k=1
∑M

m=1 σ̂kmφ̂k(t)ζ̂
∗
m/ρ̂m, where ζ̂ ∗

m is as in (11). Define the
target trajectory Ỹ ∗(t) = µ(t) + ∑∞

k=1
∑∞

m=1 σkmζ̃ ∗
mφk(t)/ρm and Ỹ ∗

KM = µ(t) +∑K
k=1

∑M
m=1 σkmζ̃ ∗

mφk(t)/ρm, where ζ̃ ∗
m is defined in (10). Assume that

(A3)
∑∞

k=1
∑∞

m=1 σ 2
km/(λkρm) < ∞.

Then E[Y ∗(t)|X∗] and Ỹ ∗ are defined as the limits of Y ∗
KM(t) and Ỹ ∗

KM(t) in the
L2 sense; see Lemma A.3 in Appendix A.3. Furthermore, we assume:

(A4) The number and locations of measurements for a given subject or cluster
remain unaltered as the sample size n → ∞.

THEOREM 2. Under (A3), (A4) and the assumptions of Lemma A.1 and (B5)
(see Appendix A.1), given L∗ and S∗, for all t ∈ T ,

lim
n→∞ Ŷ ∗

KM(t) = Ỹ ∗(t) in probability.(24)

This provides the consistency of the prediction Ŷ ∗
KM for the target trajectory Ỹ ∗.

For the following results, we require Gaussian assumptions.

(A5) For all 1 ≤ i ≤ n, m ≥ 1 and 1 ≤ l ≤ Li , the functional principal component
scores ζim and the measurement errors εil in (1) are jointly Gaussian.



2892 F. YAO, H.-G. MÜLLER AND J.-L. WANG

Define ωKM(t1, t2) = φT
t1K

PKM�MP T
KMφt2K , for t1, t2 ∈ T . Then ωKM(t1, t2)

is a sequence of continuous positive definite functions, and ω̂KM(t1, t2) =
φ̂T

t1K
P̂KM�̂MP̂ T

KMφ̂t2K is an estimate of ωKM(t1, t2). We require existence of
a limiting function and, therefore, the following analytical condition:

(A6) There exists a continuous positive definite function ω(t1, t2) such that
ωKM(t1, t2) → ω(t1, t2) as K,M → ∞.

We obtain the asymptotic distribution of {Ŷ ∗
KM(t)−E[Y ∗(t)|X∗]} as follows, pro-

viding inference for predicted trajectories.

THEOREM 3. Under (A3)–(A6) and the assumptions of Lemma A.1 and (B5)
(see Appendix A.1), given L∗ and S∗, for all t ∈ T , x ∈ �,

lim
n→∞P

{
Ŷ ∗

KM(t) − E[Y ∗(t)|X∗]√
ω̂KM(t, t)

≤ x

}
= �(x).(25)

Considering the measure R2 (15), R2 is well defined since
∑∞

m,k=1 σ 2
mk/ρm ≤∑∞

k=1 λk < ∞. Furthermore, the right-hand side of (17) uniformly converges on
t ∈ T , provided that

(A7) κ(t) = ∑∞
m=1

∑∞
k,�=1 |σkmσ�mφk(t)φ�(t)|/ρm is continuous in t ∈ T , and

the function R2
MK(t) = ∑M

m=1
∑K

k,�=1 σkmσ�mφk(t)φ�(t)/ρm absolutely
converges to R2(t) for all t ∈ T .

The consistency of R̂ 2 (16), R̂ 2(t) (19) and ̂̃R2
(20) is obtained as a consequence

of Lemma A.1, (A7) and (B5).

THEOREM 4. Under the assumptions of Lemma A.1 and (B5) (see Appen-
dix A.1),

lim
n→∞ R̂ 2 = R2 in probability,(26)

and if (A7) is assumed,

lim
n→∞ sup

t∈T
|R̂ 2(t) − R2(t)| = 0 in probability,(27)

lim
n→∞

̂̃R2 = R̃ 2 in probability.(28)

We note that the rate of convergence in (26) is the same as in the remark after
Theorem 1, and that the rate in (27) and (28) is given by Op(τn + υn + ςn + πn),
where πn is as in (29).
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7. Concluding remarks. The functional regression method we are proposing
applies to the situation where both predictors and responses are curves. Sparse data
situations will occur also in other functional regression situations where responses
could be functions and predictors vectors, or where responses are scalars and the
predictors are curves. The ideas presented here can be extended to such situations.

The approach to functional regression we have proposed is quite flexible, and in
simulations is seen to be robust to violations of assumptions such as the Gaussian
assumption. It is a useful tool for data where both predictors and responses are
contaminated by errors. We refer to [9] for another approach and discussion of
de-noising of single pairs of curves observed with measurement errors. Besides
varying coefficient models, the available methodology for situations where one
has a sample of predictor and response functions is quite limited. Common meth-
ods in longitudinal data analysis such as Generalized Estimating Equations and
Generalized Linear Mixed Models are not suitable for this task.

The proposed methodology may prove generally useful for longitudinal data
with missing measurements, where missingness would be assumed to be totally un-
related to the random trajectories and errors. Extensions to situations where miss-
ingness is correlated with the time courses would be of interest in many practical
applications. There are also some limitations to the functional regression approach
under sparse data. Our prediction methods target the trajectory conditional on the
available data, while the response trajectory given the entire but unobservable pre-
dictor trajectory is not accessible. While in theory it is enough that the probability
that one observes more than one measurement per random trajectory is positive,
in practice there needs to be a substantial number of subjects with two or more
observations.

Sometimes a prediction for a response trajectory may be desired even if there
is no observation at all available for that subject. In this case we predict the esti-
mated mean response function as the response trajectory. This is not unreasonable,
since borrowing strength from other subjects to predict the response trajectory for
a given subject is a key feature of the proposed method that will come more into
play for subjects with very few measurements. Predictions for these subjects will
often be relatively closer to the mean response than for subjects with many mea-
surements.

We conclude by remarking that extensions to cases with more than one predictor
function are of interest in a number of applications, and would be analogous to
the extension of simple linear regression to multiple linear regression. Functional
regression is only at its initial stages and much more work needs to be done.

APPENDIX

A.1. Assumptions and notation. The data (Sil,Uil) and (Tij ,Vij ),
i = 1, . . . , n, l = 1, . . . ,Li , j = 1, . . . ,Ni , as described in (1) and (2), are assumed
to have the same distribution as (S,U) and (T ,V ), with joint densities g1(s, u)
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and g2(t, v). Assume that the observation times Sil are i.i.d. with marginal den-
sity fS(s). Dependence is allowed for observations Uil1 and Uil2 made for the
same subject or cluster, and analogous properties hold for Vij , where Tij are i.i.d.
with marginal density fT (t). We make the following assumptions for the number
of observations Li and Ni that are available for the ith subject:

(B1.1) The number of observations Li and Ni made for the ith subject or cluster

are random variables such that Li
i.i.d.∼ L, Ni

i.i.d.∼ N , where L and N are
positive discrete random variables, with P(L > 1) > 0 and P(N > 1) > 0.

The observation times and measurements are assumed to be independent of the
number of measurements, that is, for any subsets Li ⊆ {1, . . . ,Li} and Ji ⊆
{1, . . . ,Ni}, and for all i = 1, . . . , n,

(B1.2) ({Sil : l ∈ Li}, {Uil : l ∈ Li}) is independent of Li , and ({Tij : j ∈ Ji},
{Yij : j ∈ Ji}) is independent of Ni .

Let K1(·) and K2(·, ·) be nonnegative univariate and bivariate kernel functions
that are used in the smoothing steps for the mean functions µX , µY , covariance
surfaces GX , GY , and cross-covariance structure C. Assume that K1 and K2 are
compactly supported densities with zero means and finite variances. Let bX =
bX(n), bY = bY (n), hX = hX(n), hY = hY (n) be the bandwidths for estimating
µ̂X and µ̂Y (30), ĜX and ĜY (31), and h1 = h1(n), h2 = h2(n) be the bandwidths
for obtaining Ĉ (36). We develop asymptotics as the number of subjects n → ∞,
and require the following:

(B2.1) bX → 0, bY → 0, nb4
X → ∞, nb4

Y → ∞, nb6
X < ∞ and nb6

Y < ∞.
(B2.2) hX → 0, hY → 0, nh6

X → ∞, nh6
Y → ∞, nh8

X < ∞ and nh8
Y < ∞.

(B2.3) Without loss of generality, h1/h2 → 1, nh6
1 → ∞ and nh8

1 < ∞.

Define the Fourier transformations of K1(u), K2(u, v) by κ1(t) = ∫
e−iutK1(u) du

and κ2(t, s) = ∫
e−(iut+ivs)K2(u, v) dudv. They satisfy the following:

(B3.1) κ1(t) is absolutely integrable, that is,
∫ |κ1(t)|dt < ∞.

(B3.2) κ2(t, s) is absolutely integrable, that is,
∫ ∫ |κ2(t, s)|dt ds < ∞.

Assume that the fourth moments of Y and U , centered at µY (T ) and µX(S), are
finite, that is,

(B4) E[(Y − µY (T ))4] < ∞, E[(U − µX(S))4] < ∞.

Let S1 and S2 be i.i.d. as S, and U1 and U2 be the repeated measure-
ments of X made on the same subject, taken at S1 and S2 separately. Assume
(Sil1, Sil2,Uil1,Uil2), 1 ≤ l1 �= l2 ≤ Li , is identically distributed as (S1, S2,U1,U2)

with joint density function gX(s1, s2, u1, u2), and analogously for (Tij1, Tij2,

Vij1,Vij2) with identical joint density function gY (t1, t2, v1, v2). Appropriate regu-
larity assumptions are imposed for the marginal and joint densities, fS(s), fT (t),
g1(s, u), g2(t, v), gX(s1, s2, u1, u2) and gY (t1, t2, v1, v2).
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Define the rank one operator f ⊗ g = 〈f,h〉y, for f,h ∈ H , and denote the
separable Hilbert space of Hilbert–Schmidt operators on H by F ≡ σ2(H), en-
dowed by 〈T1, T2〉F = tr(T1T

∗
2 ) = ∑

j 〈T1uj , T2uj 〉H and ‖T ‖2
F = 〈T ,T 〉F , where

T1, T2, T ∈ F , and {uj : j ≥ 1} is any complete orthonormal system in H . The co-
variance operator GX (resp. ĜX) is generated by the kernel GX (resp. ĜX), that is,

GX(f ) = ∫
S GX(s, t)f (s) ds, Ĝ(f ) = ∫

S ĜX(s, t)f (s) ds. Then GX and ĜX are
Hilbert–Schmidt operators, and Theorem 1 in [31] implies that ‖ĜX − GX‖F =
Op(1/(

√
nh2

X)).
Let Ii = {j :ρj = ρi}, I′ = {i : |Ii | = 1}, where |Ii | denotes the number of

elements in Ii . Let PX
j = ∑

k∈Ij
ψk ⊗ ψk , and P̂X

j = ∑
m∈Ij

ψ̂m ⊗ ψ̂m denote
the true and estimated orthogonal projection operators from H to the subspace
spanned by {ψm :m ∈ Ij }. For fixed j , let

δX
j = 1

2 min{|ρl − ρj | : l /∈ Ij },

and let �δX
j

= {z ∈ C : |z − ρj | = δX
j }, where C stands for the set of complex

numbers. The resolvent of GX (resp. ĜX) is denoted by RX (resp. R̂X), that is,
RX(z) = (GX − zI)−1 [resp. R̂X(z) = (ĜX − zI)−1]. Let

AδX
j

= sup
{‖RX(z)‖F : z ∈ �δX

j

}
,

and analogously define sequences {δY
j } and {AδY

j
} for the response process Y . We

assume that the numbers M = M(n) and K = M(n) of included eigenfunctions
depend on the sample size n, such that as n → ∞, if M(n) → ∞ and K(n) → ∞,

τn =
M(n)∑
m=1

δX
mAδX

m√
nh2

X − AδX
m

→ 0,

υn =
K(n)∑
k=1

δY
k AδY

k√
nh2

Y − AδY
k

→ 0,(B5)

ςn = KM√
nh1h2

→ 0.

The main effect of this assumption is to impose certain constraints on the rate of
K and M in relation to n and the bandwidths.

We denote the remainder in (A7) by

πn = sup
t∈T

∣∣∣∣∣
∞∑

m=M(n)

∞∑
k,�=K(n)

σkmσ�m

ρm

φk(t)φ�(t)

∣∣∣∣∣.(29)
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A.2. Estimation procedures. We begin by summarizing the estimation pro-
cedures for the components of models (1) and (2) in the following; see Yao, Müller
and Wang [31] for further details. Define the local linear scatterplot smoothers
for µX(s) through minimizing

n∑
i=1

Li∑
l=1

K1

(
Sil − s

bX

)
{Uij − βX

0 − βX
1 (s − Sil)}2,(30)

with respect to βX
0 , βX

1 , leading to µ̂X(s) = β̂X
0 (s).

Let GX
i (Sil1, Sil2) = (Uil1 − µ̂X(Sil1))(Uil2 − µ̂X(Sil2)), and define the local

linear surface smoother for GX(s1, s2) through minimizing

n∑
i=1

∑
1≤l1 �=l2≤Li

K2

(
Sil1 − s1

hX

,
Sil2 − s2

hX

)
(31)

× {
GX

i

(
Sil1, Sil2

) − f
(
βX, (s1, s2),

(
Sil1, Sil2

))}2
,

where f (βX, (s1, s2), (Sil1, Sil2)) = βX
0 + βX

11(s1 − Sil1) + βX
12(s2 − Sil2), with re-

spect to βX = (βX
0 , βX

11, β
X
12), yielding ĜX(s1, s2) = β̂X

0 (s1, s2).
For the estimation of σ 2

X , we fit a local quadratic component orthogonal to the
diagonal of GX , and a local linear component in the direction of the diagonal.
Denote the diagonal of the resulting surface estimate by G̃X(s), and a local lin-
ear smoother focusing on diagonal values {GX(s, s) + σ 2

X} by V̂X(s). Let aX =
inf{s : s ∈ S}, bX = sup{s : s ∈ S}, |S| = bX − aX , S1 = [aX + |S|/4, bX − |S|/4].
The estimate of σ 2

X is

σ̂ 2
X = 2

∫
S1

{V̂X(s) − G̃X(s)}ds/|S|,(32)

if σ̂ 2
X > 0 and σ̂ 2

X = 0 otherwise.
The estimates of {ρm,ψm}m≥1 correspond to the solutions {ρ̂m, ψ̂m}m≥1 of the

eigenequations ∫
S
ĜX(s1, s2)ψ̂m(s1) ds1 = ρ̂mψ̂m(s2),(33)

with orthonormal constraints on {ψ̂m}m≥1.
Let µ̂

(−i)
X and ψ̂

(−i)
m be the estimated mean and eigenfunctions after removing

the data for Xi . One-curve-leave-out cross-validation aims to minimize

CVX(M) =
n∑

i=1

Li∑
l=1

{
Uil − X̂

(−i)
i (Sil)

}2(34)
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with respect to M , where X̂
(−i)
i (s) = µ̂

(−i)
X (s)+ ∑M

m=1 ζ̂
(−i)
im ψ̂

(−i)
m (s), and ζ̂

(−i)
im is

obtained by (11). The AIC criterion as a function of M is given by

AIC(M) =
n∑

i=1

{
1

2σ̂ 2
X

(
Ũi − µ̂Xi

−
M∑

m=1

ζ̂imψ̂im

)T

×
(
Ũi − µ̂Xi

−
M∑

m=1

ζ̂imψ̂im

)
(35)

+ Li

2
log (2π) + Li

2
log σ̂ 2

X

}
+ M,

where Ũi = (Ui1, . . . ,UiLi
)T , µ̂Xi

= (µ̂X(Si1), . . . , µ̂X(SiLi
))T , ψ̂im = (ψ̂m(Si1),

. . . , ψ̂m(SiLi
))T , and ζ̂im is obtained by (11). We proceed analogously for the

corresponding estimates for the components of model (2) regarding the response
process Y .

The local linear surface smoother for the cross-covariance surface C(s, t) is
obtained through minimizing

n∑
i=1

Ni∑
j=1

Li∑
l=1

K2

(
Sil − s

h1
,
Tij − t

h2

){
Ci (Sil, Tij ) − f

(
β, (s, t), (Sil, Tij )

)}2(36)

with regard to β = (β0, β11, β12), leading to Ĉ(s, t) = β̂0(s, t).

A.3. Preliminary consistency results. Applying Theorems 1 and 2 of [31],
we obtain uniform consistency of the estimate of the mean functions, covariance
functions, eigenvalues and eigenfunctions of the predictor and response processes.
Under assumption (A2.3), this extends to the cross-covariance function.

LEMMA A.1. Under (B1.1)–(B5), and appropriate regularity assumptions for
fS(s), fT (t), g1(s, u), g2(t, v), gX(s1, s2, u1, u2) and gY (t1, t2, v1, v2),

|ρ̂m − ρm| = Op

( δX
mAδX

m√
nh2

X − AδX
m

)
, |λ̂k − λk| = Op

( δY
k AδY

k√
nh2

Y − AδY
k

)
.(37)

Considering eigenvalues ρm and λk of multiplicity one respectively, ψ̂m and φ̂k

can be chosen such that

sup
s∈S

|ψ̂m(s) − ψm(s)| = Op

( δX
mAδX

m√
nh2

X − AδX
m

)
,

(38)

sup
t∈T

|φ̂k(t) − φk(t)| = Op

( δY
k AδY

k√
nh2

Y − AδY
k

)
,
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and, furthermore,

sup
(s,t)∈S×T

|Ĉ(s, t) − C(s, t)| = Op

(
1√

nh1h2

)
.(39)

As a consequence of (38) and (39),

|σ̂km − σkm| = Op

(
max

{ δX
mAδX

m√
nh2

X − AδX
m

,
δY
k AδY

k√
nh2

Y − AδY
k

,
1√

nh1h2

})
,(40)

where the Op(·) terms in (37), (38) and (40) hold uniformly over all k and m.

PROOF. Part of the proof follows that of Theorem 2 in [31]. Additional ar-
guments are needed to obtain the convergence rates in (38). Since R̂X(z) =
RX(z)[I + (ĜX − GX)RX(z)]−1 = RX(z)

∑∞
l=0[(ĜX − GX)RX(z)]l , ‖R̂X(z) −

RX(z)‖F ≤ (‖ĜX − GX‖F ‖RX(z)‖F )/(1 − ‖ĜX − GX‖F ‖RX(z)‖F ). Note that
PX

j = (2πi)−1 ∫
�

δX
j

RX(z) dz, P̂X
j = (2πi)−1 ∫

�
δX
j

R̂X(z) dz. Therefore,

‖P̂X
j − PX

j ‖F ≤
∫
�

δX
j

‖R̂X(z) − RX(z)‖F dz/(2π)

≤ δX
j

‖ĜX − GX‖F AδX
j

1 − ‖ĜX − GX‖F AδX
j

≤
δX
j AδX

j√
nh2

X − AδX
j

.

Applying the arguments used in the proof of Theorem 2 in [31] leads to
(37) and (38). Under (A2.3), the uniform convergence of Ĉ is an extension of
Theorem 1 in [31]. Then (40) follows by applying (38) and (39). �

LEMMA A.2. Under (A1) the right-hand side of (5) converges in the L2

sense. Furthermore, under (A2) the right-hand side of (5) converges uniformly
on S × T .

PROOF. Let βKM(s, t) = ∑K
k=1

∑M
m=1 σkmψm(s)φk(t)/ρm. Observing the or-

thonormality of {ψm}m≥1 and {φk}k≥1,
∫
T

∫
S β2

KM(s, t) dt = ∑K
k=1

∑M
m=1 σ 2

km/ρ2
m,

and it is obvious that βKM converges in the L2 sense under (A1), that is,∫
T

∫
S[βKM(s, t) − β(s, t)]2 ds dt → 0 as K,M → ∞. Let β = limK,M→∞ βKM .

For all (s, t) ∈ S×T , let γKM(s, t) = ∑K
k=1

∑M
m=1 |σkmψm(s)φk(t)|/ρm. By (A2),

the monotonically increasing net of continuous real-valued functions {γKM(s, t)}
converges pointwise to a continuous function γ (s, t). By applying Dini’s theorem,
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the net {γKM(s, t)} converges to γ (s, t) uniformly on the compact set S × T ,
which implies the uniform convergence of the right-hand side of (5).

We denote the remainders in (A1) and (A2) as M(n),K(n) → ∞ as

θn =
∞∑

k=K(n)

∞∑
m=M(n)

σ 2
km

ρ2
m

,

(41)

ϑn = sup
s,t∈T ×S

∣∣∣∣∣
∞∑

k=K(n)

∞∑
m=M(n)

σkmψm(s)φk(t)/ρm

∣∣∣∣∣. �

LEMMA A.3. If (A4) holds, as K,M → ∞,

sup
t∈T

E
[
Y ∗

KM(t) − E[Y ∗(t)|X∗]]2 −→ 0,(42)

and for given L∗ and S∗,

sup
t∈T

E[Ỹ ∗
KM(t) − Ỹ ∗(t)]2 −→ 0.(43)

PROOF. To prove (42), note that

sup
t∈T

E
[
Y ∗

KM(t) − E[Y ∗(t)|X∗]]2 =
∞∑

m=M+1

∞∑
k=K+1

σ 2
km

ρmλk

sup
t∈T

{λkφ
2
k (t)}.

From the Karhunen–Loève theorem, we know that
∑∞

k=1 λkφ(s)φ(t) converges

uniformly in s, t ∈ T , which implies that supt∈T λkφk(t)
2 converges to zero as

k → ∞. If (A4) holds, then (42) follows. Given L∗ and S∗, since Ỹ ∗
KM(t) −

Ỹ ∗(t) = E[∑∞
m=M+1

∑∞
k=K+1 σkmφk(t)ζ

∗
m/ρm|Ũ∗],

sup
t∈T

{
E

[
E

[ ∞∑
M+1

∞∑
K+1

σkmφk(t)ζ
∗
m

ρm

∣∣∣Ũ∗
]2]

+ E

[
var

( ∞∑
M+1

∞∑
K+1

σkmφk(t)ζ
∗
m

ρm

∣∣∣Ũ∗
)]}

=
∞∑

M+1

∞∑
K+1

σ 2
km

ρmλk

sup
t∈T

{λkφ
2
k (t)} −→ 0,

and

E

[
var

( ∞∑
M+1

∞∑
K+1

σkmφk(t)ζ
∗
m/ρm|Ũ∗

)]
≥ 0 for all t ∈ T .

The result (43) follows. �
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A.4. Proofs of the main results.

PROOF OF THEOREM 1. To prove (22), observing the orthonormality of the
eigenfunction basis,∫

T

∫
S
[β̂(s, t) − β(s, t)]2 ds dt

=
∫
T

∫
S

{
K−1∑
k=1

M−1∑
m=1

[
σ̂km

ρ̂m

ψ̂m(s)φ̂k(t) − σkm

ρm

ψm(s)φk(t)

]}2

ds dt

+
∞∑

k=K

∞∑
m=M

σ 2
km

ρ2
m

+
∫
T

∫
S

[ ∞∑
k=K

∞∑
m=M

σkm

ρm

ψm(s)φk(t)

]

×
{

K−1∑
k=1

M−1∑
m=1

[
σ̂km

ρ̂m

ψ̂m(s)φ̂k(t) − σkm

ρm

ψm(s)φk(t)

]}
ds dt

≡ Q1(n) + Q2(n) + Q3(n).

Then (A1) and (B5) imply that Q2(n) → 0 as M(n),K(n) → ∞, that is, n → ∞.
By (37), (38), (40) and (B5), Slutsky’s theorem implies

Q1(n) = Op

(
M∑

m=1

δX
mAδX

m√
nh2

X − AδX
m

+
K∑

k=1

δY
k AδY

k√
nh2

Y − AδY
k

+ KM√
nh1h2

)
p−→ 0,(44)

as n → ∞. For Q3(n), using the Cauchy–Schwarz inequality, Q3(n)2 ≤ Q1(n) ×
Q2(n), thus Q3(n)

p→ 0 as n → ∞. Then (22) follows. To prove (23), note that

sup
s,t

|β̂(s, t) − β(s, t)| ≤ sup
s,t

∣∣∣∣∣
K−1∑
k=1

M−1∑
m=1

[
σ̂km

ρ̂m

ψ̂m(s)φ̂k(t) − σkm

ρm

ψm(s)φk(t)

]∣∣∣∣∣
+ sup

s,t

∣∣∣∣∣
∞∑

k=K

∞∑
m=M

σkm

ρm

ψm(s)φk(t)

∣∣∣∣∣
≡ Q4(n) + Q5(n).

One has Q5(n) → 0 as M(n),K(n) → ∞ if (A2) holds. Observing (37), (38), (40)

and (B5), Q4(n)
p→ 0 as n → ∞, leading to (23). �

PROOF OF THEOREM 2. For given L∗ and S∗, define Ỹ ∗
KM(t) = µY (t) +∑K

k=1
∑M

m=1 σkmζ̃ ∗
mφk(t)/ρm, where ζ̃ ∗

m is defined in (10). Recall Ỹ ∗(t) = µY (t)+
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k=1

∑∞
m=1 σkmζ̃ ∗

mφk(t)/ρm, Ŷ ∗
KM(t) = µ̂Y (t) + ∑K

k=1
∑M

m=1 σ̂kmζ̂ ∗
mφ̂k(t)/ρ̂m,

with ζ̂ ∗
m defined in (11). Note that

|Ŷ ∗
KM(t) − Ỹ ∗(t)| ≤ |Ŷ ∗

KM(t) − Ỹ ∗
KM(t)| + |Ỹ ∗

KM(t) − Ỹ ∗(t)|.
Lemma A.3 implies Ỹ ∗

KM(t)
p→ Ỹ ∗(t) as K,M → ∞ and n → ∞. Applying

Theorem 1 in [31], Lemma A.1 and (B5), one has supt∈T |µ̂Y (t) − µY (t)| =
Op(1/(

√
nbY )) and |ζ̂ ∗

m − ζ̃ ∗
m| = Op(δX

mAδX
m
/(

√
nh2

X − AδX
m
)) as n → ∞. Then

supt∈T |Ŷ ∗
KM(t) − Ỹ ∗

KM(t)| p→ 0 as n → ∞ by Slutsky’s theorem, and (24) fol-
lows. �

PROOF OF THEOREM 3. Analogous to the proof of Theorem 4 in [31] with
slight modifications similar to the arguments used in the proof of Theorem 1. �

PROOF OF THEOREM 4. To prove (26), note∣∣∣∣
∑M

m=1
∑K

k=1 σ̂ 2
km/ρ̂∑K

k=1 λ̂k

−
∑∞

m,k=1 σ 2
km/ρm∑∞

k=1 λk

∣∣∣∣
≤

∣∣∣∣
∑K

k=1
∑M

m=1 σ̂ 2
km/ρ̂m∑K

k=1 λ̂k

−
∑K

k=1
∑M

m=1 σ 2
km/ρm∑K

k=1 λk

∣∣∣∣
+

∣∣∣∣
∑K

k=1
∑M

m=1 σ 2
km/ρm∑K

k=1 λk

−
∑∞

m,k=1 σ 2
km/ρm∑∞

k=1 λk

∣∣∣∣
≡ Q1(n) + Q2(n).

Since the nonnegative series
∑∞

m,k=1 σ 2
km/ρm ≤ ∑∞

k=1 λk < ∞, we have Q2(n) →
0 as M,K → ∞. Observing (37), (38), (40) and (B5), one finds that Q1(n)

p→ 0
as n → ∞, by applying similar arguments to (44), leading to (26). It is obvious
that (27) implies (28). To show (27), let νKM(t) = ∑M

m=1
∑K

k,�=1 |σkmσ�mφk(t) ×
φ�(t)|/ρm for all t ∈ T . By (A7) and Dini’s theorem, the net {νKM(t)} converges
to ν(t) uniformly on the compact set T , which implies the uniform convergence
of R2

KM(t) as K,M → ∞. Applying arguments similar to those used to prove (26),
one obtains (27). �
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