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Summary. We propose an iterative estimation procedure for performing functional principal
component analysis. The procedure aims at functional or longitudinal data where the repeated
measurements from the same subject are correlated. An increasingly popular smoothing
approach, penalized spline regression, is used to represent the mean function. This allows
straightforward incorporation of covariates and simple implementation of approximate infer-
ence procedures for coefficients. For the handling of the within-subject correlation, we develop
an iterative procedure which reduces the dependence between the repeated measurements
that are made for the same subject. The resulting data after iteration are theoretically shown to
be asymptotically equivalent (in probability) to a set of independent data.This suggests that the
general theory of penalized spline regression that has been developed for independent data can
also be applied to functional data.The effectiveness of the proposed procedure is demonstrated
via a simulation study and an application to yeast cell cycle gene expression data.
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1. Introduction

Advances in modern technology, including computational genomics, have facilitated the col-
lection and analysis of high dimensional data, or data that are repeatedly measured for the
same subject or cluster. When the observed data are in the forms of random curves, rather than
scalars or vectors, dimension reduction is necessary. Therefore functional principal component
analysis has become a useful tool, as it achieves this by reducing random trajectories to a set
of functional principal component scores. Besides dimension reduction, functional principal
component analysis attempts to characterize the dominant modes of variation of a sample of
random trajectories around their mean trend(s). There is an extensive literature on functional
principal component analysis. Rao (1958) introduced the method for growth curves, and earlier
work includes Besse and Ramsay (1986), Castro et al. (1986) and Berkey et al. (1991). Since then
there has emerged a central tool of functional data analysis; for examples, see Rice and Silver-
man (1991), Jones and Rice (1992), Silverman (1996), Brumback and Rice (1998), Boente and
Fraiman (2000) and Fan and Zhang (2000), among others. For an introduction and summary,
see Ramsay and Silverman (1997).

In this paper a new iterative procedure for fitting functional principal component models is
proposed. Attractive properties of this new procedure include that it addresses the within-subject
(cluster) correlation in functional or longitudinal data. The main idea is, via an iterative pro-
cess, to transform the original correlated data such that the resulting data are asymptotically
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equivalent to a set of independent data. During the iteration process, the mean function is
updated with a popular smoothing technique, penalized spline regression, whereas the covari-
ance surface, the variance of errors and the functional principal components that are described
in model (1) below are estimated by the local polynomial method of Yao et al. (2003). The use
of penalized splines provides an easy and straightforward way to incorporate covariates and
to make inference for covariate effects, and the coupling with the method of Yao et al. (2003)
facilitates a theoretical study of the asymptotic properties of the overall proposed procedure.
We term the procedure iterative penalized spline (IPS) fitting.

Through an analytic derivation of its asymptotic properties, IPS fitting is shown to provide
a sample of transformed data which are asymptotically equivalent (in probability) to a set of
independent data. Therefore the theory of penalized spline regression that has been developed
for independent data can be applied to the transformed data and uniform consistency of the
mean estimate as well as other model components is obtained as a consequence. To the best
of our knowledge, no asymptotic consistency results of penalized spline models for functional
data are available so far, whereas kernel and smoothing spline approaches for clustered data
have been investigated by Lin and Carroll (2000), Wang (2003), Lin et al. (2004) and Wang et al.
(2005). In most of these existing approaches, the covariance structure is modelled through a
finite number of parameters by using moment methods, which inherits the feature of covariance
estimation in classical longitudinal approaches. In contrast we use a nonparametric smoothing
approach to model the covariance surface without assuming any parametric form, which makes
the theoretical development more challenging. The empirical properties of IPS fitting are also
studied, via both a simulation study and an application to yeast cell cycle gene data, which
suggest that IPS fitting is superior to other existing methods.

The remainder of the paper is organized as follow. In Section 2 we introduce the principal
component models and penalized spline regression for functional data. The IPS procedure pro-
posed, together with its theoretical properties, is presented in Section 3. Simulation results
that illustrate the effectiveness of the methodology are reported in Section 4. The application
of IPS fitting to yeast cell cycle gene expression data is provided in Section 5, and concluding
remarks are offered in Section 6. Technical details are deferred to Appendix A.

2. Background

This section provides some background material for the development of the IPS procedure.
First, a general description of the classical functional principal component models is given
in Section 2.1. Then Section 2.2 demonstrates how the penalized splines can be straightfor-
wardly applied to model the mean function when the within-subject correlation between
repeated measurements from the same subject is ignored. Lastly, for completeness, we sum-
marize the relevant results from Yao et al. (2003) that will be required for the rest of this
paper.

2.1. Model with measurement error
We model the functional data as noisy repeated measurements from a collection of curves with
the common unknown covariance function G.s, t/= cov{Xi.s/, Xi.t/}, where Xi is the smooth
random trajectory of the ith subject. The domain of Xi.·/ typically is a bounded and closed
time interval T , although it could also be a spatial variable, such as in image or geoscience
applications. We assume that there is an orthogonal expansion (in the L2-sense) of G in terms
of eigenfunctions {φk}k=1,2,::: and non-increasing eigenvalues {λk}k=1,2,::::
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G.s, t/=
∞∑

k=1
λk φk.s/φk.t/, t, s∈T :

Karhunen–Loève representation in the classical functional principal component analysis im-
plies that the ith random curve can be expressed as

Xi.t/=µ.t/+
∞∑

k=1
ξik φk.t/, t ∈T ,

where µ.t/ is the mean function, the coefficients

ξik =
∫

T
{Xi.t/−µ.t/}φk.t/dt

are uncorrelated random variables with zero mean and variances E.ξ2
ik/ =λk, and Σk λk < ∞,

λ1 �λ2 � . . .:
To model the noisy observations realistically, we incorporate uncorrelated measurement error

"ij from a common distribution family with mean 0 and variances σ2.tij/ that may be hetero-
scedastic to reflect the additional noise, where σ2.t/ is assumed to be bounded from 0 and ∞
on T , i.e. 0< inf t∈T {σ2.t/}� supt∈T {σ2.t/}<∞. Let Yij denote the jth observation of Xi.·/ at
time tij with additional noise "ij that is independent of ξik, i=1, . . . , n, j =1, . . . , ni, k=1, 2, . . . ,
where ni is the number of measurements that are made on the ith subject. Then we consider the
model

Yij =Xi.tij/+ "ij

=µ.tij/+
∞∑

k=1
ξik φk.tij/+ "ij, tij ∈T , .1/

where E."ij/=0 and E."2
ij/=σ2.tij/.

2.2. Estimation of mean function using penalized spline regression
As the mean function µ.t/ is assumed smooth, we can estimate µ.t/ by using penalized regres-
sion with a spline basis. Owing to its flexibility to capture non-linear relationships, efficiency
in computation, and its ability to provide effective inferential tools, penalized spline regression
has become a popular method for estimating smooth functions (see Ruppert et al. (2003)).
Let Yi = .Yi1, . . . , Yini/

T and Ti = .ti1, . . . , tini /
T. Also let Bq.t/= .Bq1.t/, . . . , Bqq.t//T denote the

q-vector of a spline basis evaluated at time t that is used to model the mean function µ.t/.
The mean function µ.t/ is thus modelled by the penalized approximation BT

q .t/β, where β =
.β1, . . . ,βq/T is the coefficient vector. Let λÅ be the smoothing parameter and D some sym-
metric positive semidefinite matrix. Let Bqi = .Bq.ti1/, . . . , Bq.tini //

T denote the ni × q spline
basis matrices evaluated at design points Ti. Then the coefficient vector β is estimated by the
minimizer of the penalized least squares criterion

n∑
i=1

‖Yi −Bqiβ‖2 +λÅβTDβ, .2/

where the roughness penalty is given by λÅβTDβ. The idea of introducing such a penalty term
can be dated back as early as O’Sullivan (1986). If there is correlation between repeated mea-
surements that are made for the same subject, the estimates that are obtained by criterion (2)
might not be optimal.

A typical choice of the spline basis is the truncated power basis of degree p, i.e. Bq.t/ =
.1, t, . . . , tp, .t −κ1/

p
+, . . . , .t −κk/

p
+/T with knots at κ1, . . . ,κk, which implies that q=p+k +1,
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where .x/+ =max.0, x/. A common choice of D is the block diagonal matrix diag.0.p+1/×.p+1/,
Ik×k/, where 0p×p is a p × p matrix with all entries equal to 0 and Ip×p is the p × p iden-
tity matrix. Other spline bases can also be used to achieve low rank approximations, such as
B-splines and radial basis functions. In our implementation the smoothing parameter is, owing
to the within-subject correlation, chosen by leave out one curve generalized cross-validation
(Rice and Silverman, 1991). In practice the choice of the number of knots is not as crucial
as the choice of the smoothing parameter as long as an adequate number of knots are used
(see Ruppert (2002)). A reasonable choice of knots κj in our simulation and application exam-
ple can be achieved by selecting the 10th, 20th, . . . , 90th percentiles of the pooled observation
times.

Shi et al. (1996), Rice and Wu (2000) and James et al. (2001) studied the use of B-splines
with no roughness penalties to model the individual curves with random coefficients through
mixed effects models. Perhaps because of the complexity of their modelling approaches, they
did not investigate the asymptotic properties of the estimated components in relation to the
true values, such as the behaviours of the estimated mean, covariance structure and principal
components. In contrast, in our spline-based modelling approach we represent the trajectories
directly through the Karhunen–Loève expansion, in which the eigenfunctions are determined
from the data. With this simpler and more direct approach, as demonstrated below, we can
derive asymptotic properties of our proposed procedure.

2.3. Estimation of covariance surface and functional principal components
In this paper we adopt the procedures of Yao et al. (2003) to estimate the covariance surface,
the variance of errors and the functional principal components in model (1). This subsection
provides a brief description of these estimation procedures.

Let K1.·/ and K2.·, ·/ be univariate and bivariate compactly supported kernel densities with
zero means and finite variances that are used to estimate covariance G.s, t/ and {G.t, t/+σ2.t/}.
Let hG =hG.n/ and hV =hV .n/ be the corresponding bandwidths. Let

Gi.tij, til/={Yij − µ̂.tij/}{Yil − µ̂.til/},

where µ̂.t/ is the estimated mean function that is obtained from the previous step. The local
linear smoother estimate Ĝ.s, t/ for G.s, t/ is obtained by minimizing

n∑
i=1

∑
1�j �=l�ni

K2

(
tij − s

hG
,
til − t

hG

)
[Gi.tij, til/−f{γ, .s, t/, .tij, til/}]2 .3/

where

f{γ, .s, t/, .tij, til/}=γ0 +γ11.s− tij/+γ12.t − til/:

To estimate σ2.t/, a local linear fit is obtained in the directions of the diagonal, where

n∑
i=1

ni∑
j=1

K1

(
tij − t

hV

)
{Gi.tij, tij/−α0 −α1.t − tij/}2 .4/

is minimized. The resulting linear fit is denoted as V̂ .t/ and the estimate of σ2.t/ is then

σ̂2.t/=
∫

T
{V̂ .t/− Ĝ.t, t/}+ dt, .5/
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where .x/+ =max.0, x/. The estimates of {λk,φk}k�1 are obtained as the solutions {λ̂k, φ̂k}k�1
of the eigenequations ∫

T
Ĝ.s, t/ φ̂k.s/ds= λ̂k φ̂k.t/, .6/

with orthonormal constraints on {φ̂k}k�1 that are unique up to a change in sign; see Yao et al.
(2003) for details.

When the density of the grid of measurements for each subject is sufficiently large, the func-
tional principal component scores ξik = ∫

{Xi.t/−µg.i/.t/}φk.t/dt are estimated by numerical
integration:

ξ̂ik =
ni∑

j=2
{Yij − µ̂.tij/} φ̂k.tij/.tij − ti, j−1/: .7/

Finally, for the selection of the number of eigenfunctions K, we could use the Akaike infor-
mation criterion (AIC) type of criterion that was suggested by Yao et al. (2005). Denote µ̂i =
.µ̂.ti1/, . . . , µ̂.tini //

T, φ̂ik = .φ̂k.ti1/, . . . , φ̂k.tini //
T and Σi = diag{σ̂2.ti1/, . . . , σ̂2.tini /}. Then, if

the error terms "ij in model (1) are assumed to be normal, K is chosen by minimizing

AIC.K/∝
n∑

i=1

{
− 1

2

(
Yi − µ̂i −

K∑
k=1

ξ̂ikφ̂ik

)T

Σ−1
i

(
Yi − µ̂i −

K∑
k=1

ξ̂ikφ̂ik

)}
+K, .8/

where the terms that do not depend on K are eliminated. For a more general discussion on the
AIC, see Burnham and Anderson (2002).

3. Iterative penalized spline fitting for within-subject measurement correlation

This section presents the proposed IPS procedure, a smoothing procedure for fitting functional
principal component models. An advantage of adopting penalized splines for the estimation of
the group mean functions µg.t/ is that it allows easy incorporation of covariates. A naı̈ve appli-
cation of the penalized splines (e.g. solutions to expression (2)) for this problem will not lead to
optimal estimates when within-subject correlation is present. Although Lin and Carroll (2000)
showed that, for longitudinal data, it is reasonable to ignore the within-subject correlation when
using kernel-based smoothing methods, the same is not true for splines (see Welsh et al. (2002)).
Splines and conventional kernels are very different in local properties and thus behave differ-
ently in terms of accounting for the within-subject dependence. Lin et al. (2004) showed that the
smoothing spline estimator has the smallest variance when the unobservable true covariance
function is used. However, it is not clear whether this conclusion can be extended to penalized
spline regression, as penalized splines are a low rank smoothing method whereas smoothing
splines are a full rank smoothing method. These considerations suggest the need for a more
sophisticated penalized spline estimation method extending expression (2). The proposed IPS
procedure is designed for handling this issue.

3.1. Iterative penalized spline procedure
Hall and Opsomer (2005) showed that the penalized spline smoother is a uniformly consistent
estimator for independent data. Motivated by this result, our strategy is to reduce the within-sub-
ject correlation between observations that are made for the same subject so that after iteration
the empirical working data (defined in equation (9) below) are asymptotically equivalent (in
probability) to a set of independent data. We first assume that the trajectories are observed on
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a dense grid, i.e. the density of measurements for each subject is sufficiently large. The case for
sparse functional data is briefly discussed later.

Given an initial mean estimate µ̂.0/, the IPS procedure iterates, until convergence, the follow-
ing steps for l=0, 1, 2, . . ..

Step 1: with the current mean function estimate µ̂.l/ at the lth iteration, obtain an estimate
Ĝ.l/ for the smooth covariance surface by two-dimensional local linear smoothing (3). Note
that the empirical variances that are obtained at the diagonal of the surface are omitted, as
these are contaminated with the residual variance σ2.t/ (see expression (3)).
Step 2: use equation (6) to compute estimates φ̂.l/

k and λ̂.l/
k for respectively the eigenfunctions

and eigenvalues.
Step 3: by using the empirical variances that are obtained on the diagonal of the covariance
surface, estimate the variance function σ2.t/ by equation (5).
Step 4: use the integration approximation (7) to obtain estimate ξ̂.l/

ik for the individual func-
tional principal component scores.
Step 5: for all i and j, define the theoretical working data as

YÅ
ij =Yij −

∞∑
i=1

ξik φk.tij/:

Note that the YÅ
ijs are independent, and estimate them by the empirical working data

Ŷ
Å.l/
ij =Yij −

K.l/∑
k=1

ξ̂
.l/
ik φ̂

.l/
k .tij/, .9/

where K.l/ is the number of eigenfunctions, chosen by the AIC (8), that are used for approx-
imation in the current iteration.
Step 6: in equation (2) replace the real data Yij with the estimated working data Ŷ

Å.l/
ij and

compute the next iterative mean function estimate µ̂.l+1/ as its minimizer.

In our implementation, convergence is declared if the following relative integrated squared
difference RISD between µ̂.l/ and µ̂.l+1/ is less than a prespecified tolerance:

RISDl =
∫

T
{µ̂.l+1/.t/− µ̂.l/.t/}2 dt

/∫
T
µ̂.l/.t/2 dt: .10/

Also, for the initial estimates µ̂.0/, we investigated the use of the penalized spline model (2) and
the more traditional local polynomial smoothing (for example see expression (15) in Appendix
A.1). For both cases the amount of smoothing is chosen by leave out one curve cross-validation
or its generalized version.

Remark 1. It is easy to extend the approach proposed to sparse functional data, i.e. when the
number of repeated measurements that are available per subject is small. For sparse data, Yao
et al. (2005) demonstrated that the best linear prediction, denoted by ξ̂P

ik, of ξik given the data
from the subject Yi = .Yi1, . . . , Yini/ outperforms the traditional integration approximation (7).
Yao et al. (2005) termed ξ̂P

ik the principal component analysis through conditional expectation
estimate. Details on the construction of ξ̂P

ik can be found in Yao et al. (2005). Hence, for sparse
data, in step 4 of the IPS procedure we suggest replacing the integration estimates ξ̂ik (7) by
the principal component analysis through conditional expectation estimates ξ̂P

ik. Although the
theory of coupling IPS with principal component analysis through conditional expectation
has not been developed, simulation results to be reported in the next section demonstrate the
promising practical performance of IPS with it.
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Remark 2. As mentioned before, an advantage of using penalized spline regression to estimate
the mean function is that it allows simple implementation of approximate inference procedures.
Here we follow the approach of Ruppert et al. (2003) and demonstrate the construction of an
approximate confidence interval for any contrast of the coefficients, i.e. aTβ for any a ∈ �q.
First, from equation (2) with Yi replaced by YÅ

i = .YÅ
i1, . . . , YÅ

ini
/T, it is straightforward to obtain

the following closed form expression for β̂:

β̂=
(

n∑
i=1

BT
qiBqi +λÅD

)−1 n∑
i=1

BqiYÅ
i :

Also, cov.YÅ
ij , YÅ

il / = δjl σ
2.tij/, where σ2.·/ is the variance function of measurement error and

δkl =1 for k = l and δkl =0 otherwise. Denote Ri =diag{σ2.ti1/, . . . ,σ2.tini /}. Direct calculations
lead to the following covariance matrix Σβ̂ for β̂:

Σβ̂ = cov.β̂, β̂/

=
(

n∑
i=1

BT
qiBqi +λÅD

)−1 (
n∑

i=1
BqiRiBT

qi

)(
n∑

i=1
BT

qiBqi +λÅD
)−1

:

Then an approximate 100.1−α/% confidence interval of aTβ can be obtained by

aTβ̂±Φ.1−α=2/.aTΣ̂β̂a/1=2, .11/

where Σ̂β̂ is calculated by plugging in the corresponding estimates that are obtained from the
last iteration of the IPS fitting, and Φ.·/ is the standard Gaussian distribution function. Possible
fixed covariates can be included by adding columns to the design matrices Bqi under appropriate
model assumptions. Our framework also provides a natural way for examining the time-varying
effect of any time-independent random covariate; for example, see Rice and Wu (2000) and
Chiou et al. (2003).

3.2. Theoretical properties of iterative penalized splines
We have studied the theoretical properties of the IPS procedure proposed, and we summarize
the results in the following two theorems. Assumptions and proofs are deferred to Appendices
A.1 and A.2. For simplicity, we consider only the case of one-step iteration. In what follows g.x; t/

denotes the density function of Y.t/ and g2.y1, y2; t1, t2/ denotes the density of .Y.t1/, Y.t2//. It
is assumed that these density functions satisfy appropriate regularity conditions.

We assume that the initial estimates µ̂.0/ are obtained by local polynomial smoothing, as
described by expression (15) in Appendix A.1, and we expect that similar theoretical results can
be obtained if µ̂.0/ were computed by the penalized spline model (2). We further require that the
repeated measurements from each subject are sufficiently dense; see the precise description in
Appendix A.1. Under these conditions, we obtain uniform consistency of the estimates of the
local polynomial estimates of the mean and the covariance functions of the process X.t/. We
also obtain convergence results for the estimated principal components, with the rate depending
on the specific property of the process X as stated in lemma 2 (see Appendix A.2). These results
are the first step to the asymptotic analysis of the empirical working data {Ŷ

Å.0/
ij }.

The central results towards the theoretical analysis of the empirical working data are pre-
sented in theorem 1, which provides uniform consistency of the estimated principal component
scores ξ̂.0/

ik and thus the empirical working data YÅ
ij over js. These results form the basis for the

consistent estimation of model components using empirical working data in the iterative steps.
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Theorem 1. Under assumptions (a)–(j) in Appendix A.1 and appropriate regularity assump-
tions for g.x; t/ and g2.x1, x2; t1, t2/,

sup
1�k�K

|ξ̂.0/
ik − ξik| p→0, .12/

sup
1�j�ni

|ŶÅ.0/
ij −YÅ

ij |
p→0: .13/

From theorem 1 we conclude that the empirical working data {Ŷ
Å.0/
ij } are asymptotically equiv-

alent to their theoretical counterparts {YÅ
ij}, and in fact sup1�j�ni

|ŶÅ.0/
ij −YÅ

ij |=Op.θin/ where
θin is defined in equation (22) in Appendix A.2 and the Op.·/ term holds uniformly over all
is. Since these theoretical working data {YÅ

ij} are independent, by applying penalized spline
smoothing to the empirical working data Ŷ

Å.0/
ij , we obtain the uniform consistency for the

penalized spline estimate of the mean function, by using the results in section 4.2 of Hall and
Opsomer (2005) under appropriate conditions. Then the uniform consistency can also be shown
for the covariance estimator Ĝ that is obtained as in step 1. The central results are provided in
theorem 2 below.

Theorem 2. Under assumptions (a)–(m) in Appendix A.1 and appropriate regularity assump-
tions for g.x; t/ and g2.x1, x2; t1, t2/,

sup
t∈T

|µ̂.t/−µ.t/| p→0,

sup
s,t∈T

|Ĝ.s, t/−G.s, t/| p→0:
.14/

Remark 3. We remark that the uniform convergence rate for the penalized spline estimator
µ̂ is obtained as Op.ωn +θÅn /, where ωn and θÅn are as defined in expressions (21) and (23), and
thus the uniform convergence rate of the covariance estimator Ĝ (3), in which µ̂.t/ is used,
can also be expressed explicitly as Op.ωn + θÅn + 1=n1=2h2

G/, where hG is the bandwidth that is
used in expression (3). On the basis of theorem 2, the asymptotic consistency for other model
components, such as principal components, can also be obtained by analogy with lemma 1.

Remark 4. We can see that the iterative approach that is proposed here is also applicable to
other smoothing methods and is not only restricted to penalized spline regression. For example,
we could apply local polynomial smoothing or smoothing spline methods to the empirical work-
ing data in each iteration. On the basis of the established theory for those smoothing methods,
the theoretical arguments for the iterative approach still hold, and similar consistency results can
be obtained. Because of the computational efficiency, we focus on the penalized spline models,
though the theoretical development for penalized splines is more challenging.

4. Simulation studies

To assess the practical performance of the IPS procedure proposed, a simulation study was
conducted. We generated 100 independently and identically distributed normal and 100 inde-
pendently and identically distributed non-normal samples consisting of n=100 random trajec-
tories. The simulated processes have a mean function µ.t/= t + sin.t/, 0� t �10, and covariance
function derived from two eigenfunctions φ1.t/=− cos.πt=10/=

√
5 and φ2.t/= sin .πt=10/=

√
5,

0 � t � 10. We chose λ1 = 4, λ2 = 1 and λk = 0, k � 3, as eigenvalues and σ2.t/ ≡ 0:25 as vari-
ance of the additional measurement errors "ij in model (1), which are assumed to be normal
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with mean 0. For the 100 normal samples, the functional principal component scores ξik were
generated from the N .0,λk/ distribution, whereas the ξik for the non-normal samples were
generated from a mixture of two normal distributions, N{.λk=2/1=2,λk=2} with probability 1

2
and N{−.λk=2/1=2,λk=2} with probability 1

2 .
We also consider both sparse and non-sparse designs. For an equally spaced grid {c0, . . . , c50}

on [0, 10] with c0 = 0 and c50 = 10, let si = ci + ei, where ei are independently and identically
distributed with N .0, 0:12/, si = 0 if si < 0 and si = 10 if si > 10, allowing for non-equi-
distant ‘jittered’ designs. For the sparse design, each curve was sampled at a random number
of points, chosen from a discrete uniform distribution on {3, . . . , 6}, and the locations of
the measurements were randomly chosen from {s1, . . . , s49} without replacement, whereas, for
the non-sparse design, the number of observations for each curve was randomly chosen from
{20, . . . , 30}.

The following four different methods were compared.

(a) The mean function µ.t/ is estimated by using the penalized spline model (2), and the
covariance and principal components are estimated by the method that was described in
Section 2.3. Note that no iteration is performed (method 1).

(b) Method 2 is similar to method 1, but the mean function µ.t/ is estimated with local
polynomial smoothing (15).

(c) Method 3 is the IPS procedure proposed where the initial group mean estimates µ̂.0/ are
obtained by local polynomial smoothing (15).

(d) Method 4 is the IPS procedure proposed where the initial group mean estimates µ̂.0/ are
obtained by the penalized spline model (2).

In these methods, for all the local polynomial smoothing steps, either the univariate or the
bivariate Epanechnikov kernel functions were used, i.e.

K1.x/= 3
4

.1−x2/1[−1,1].x/

and

K2.x, y/= 9
16

.1−x2/.1−y2/1[−1,1].x/1[−1,1].y/,

where 1A.x/ = 1 if x ∈ A and 1A.x/ = 0 otherwise for any set A and, for the penalized spline
regression, a cubic spline basis was used, i.e. p=3.

To demonstrate the superior performances of the IPS procedure proposed (methods 3 and
4) compared with the non-iterative methods (1 and 2), we report in Table 1 the Monte Carlo
estimates that were obtained from 100 non-sparse or sparse and normal or mixture simulated
data sets (in total 400 data sets) for the integrated mean-squared error IMSE of µ̂.t/ that consists
of the integrated squared bias IBIAS and integrated variance IVAR, i.e.

∫ 10

0
E[{µ̂.t/−µ.t/}2] dt =

∫ 10

0
[µ̂.t/−E{µ̂.t/}]2 dt +

∫ 10

0
[E{µ̂.t/}−µ.t/]2 dt:

Recall that the predicted individual trajectories using K eigenfunctions are denoted byX̂
K
i .t/=

µ̂.t/+ΣK
k=1 ξ̂ik φ̂k.t/, where ξ̂ik are obtained either by the integration method (7) for non-sparse

data or by the principal component analysis through conditional expectation method for sparse
data.
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Table 1. Simulation results for comparing mean estimates obtained by methods 1–4 from 100 Monte Carlo
runs with nD100 random trajectories per sample†

Design Method Results for the normal Results for the mixture
distribution distribution

IBIAS IVAR IMSE IPE IBIAS IVAR IMSE IPE

Optimal
Non-sparse (integration) 1 0.003 0.066 0.069 0.242 0.004 0.065 0.069 0.243

2 0.007 0.072 0.079 0.246 0.008 0.072 0.080 0.247
3 0.003 0.055 0.058 0.223 0.003 0.056 0.059 0.224
4 0.003 0.056 0.059 0.224 0.003 0.057 0.060 0.225

Sparse (principal component 1 0.006 0.154 0.160 1.77 0.008 0.166 0.174 1.75
analysis through 2 0.030 0.173 0.203 1.79 0.034 0.178 0.212 1.79
conditional expectation) 3 0.004 0.116 0.120 1.62 0.003 0.123 0.126 1.63

4 0.004 0.118 0.122 1.61 0.004 0.125 0.129 1.60

Model selected
Non-sparse (integration) 1 0.004 0.070 0.074 0.245 0.003 0.069 0.073 0.245

2 0.008 0.077 0.085 0.248 0.007 0.077 0.084 0.251
3 0.003 0.058 0.061 0.227 0.003 0.058 0.061 0.228
4 0.003 0.059 0.062 0.226 0.003 0.059 0.062 0.227

Sparse (principal component 1 0.004 0.205 0.209 1.84 0.005 0.198 0.203 1.85
analysis through 2 0.028 0.218 0.246 1.86 0.034 0.208 0.242 1.84
conditional expectation) 3 0.003 0.148 0.151 1.69 0.002 0.154 0.156 1.68

4 0.003 0.145 0.148 1.68 0.003 0.148 0.151 1.67

†The functional principal component scores were calculated by using either the integration or the principal com-
ponent analysis through conditional expectation methods that were described in Section 3. Shown are the Monte
Carlo estimates of the integrated mean-squared error IMSE, the integrated squared bias IBIAS, the integrated
variance IVAR and the integrated squared prediction error IPE. See Section 4 for details.

To avoid the bias in comparison that is possibly caused by inadequate choices of tuning
parameters, such as λÅ, K, bandwidths and knots, we constructed two scenarios. First,
methods 1–4 are compared at optimal tuning parameter values, denoted by ‘optimal’.
Specifically, the optimal bandwidths hµ for µ̂.0/.t/ that were used in methods 2 and 3 (ini-
tial estimate in method 3) is chosen by minimizing the L2-distance between the estimated
and true mean functions, i.e.

∫ 10
0 {µ̂.0/.t; hµ/ − µ.t/}2 dt. Other optimal smoothing parame-

ters, including hG, hV and λÅ that were used in methods 1–4 for the covariance function of
X.t/, the variance function of ".t/ and the penalized spline estimate of µ.t/ are also chosen
by minimizing the corresponding L2-distances. The number of eigenfunctions K was fixed
at the true value 2. Second, the tuning parameters are chosen by model-based procedures,
denoted by ‘model selected’. For computational convenience, here we used tenfold cross-
validation to choose hµ, hG and hV , which involved removing 10% of the individual curves
as a test set, finding the estimates from the remaining data and repeating the process nine more
times, whereas λÅ was chosen by tenfold generalized cross-validation. The number of eigenfunc-
tions K in each run was chosen by the AIC (8). Since Ruppert (2002) showed that the penalized
spline estimators are relatively insensitive to the choice of basis functions compared with the
choice of λÅ, as long as enough of them are used, here an adequate choice of knots (10th, . . . ,
90th percentiles of the pooled observation times) was used in methods 1–4 for both scenarios.

From Table 1, we can see that the IPS procedures (methods 3 and 4) improved the integrated
mean-squared errors IMSE of mean estimates over non-iterative procedures 1 and 2 by around
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25–40% for sparse samples and 15–35% for non-sparse samples in both the optimal and the
model-selected scenarios, although it is not surprising that the IMSEs that were obtained in the
optimal scenario are slightly smaller than those in the model-selected scenario. The procedures
are ‘robust’ regarding the distribution of random components ξik, yielding similar amounts of
improvement for the normal and mixture samples. This also provides empirical justifications
for the use of IPS in the sparse data situation where the functional principal component scores
are obtained by principal component analysis through conditional expectation estimates com-
pared with the non-iterative procedures. It is interesting that the improvement that is obtained
by the IPS procedures for sparse samples is more dramatic than that obtained for non-sparse
samples, which suggests that further investigation of such a phenomenon is worthwhile (and
also beyond the scope of this paper). The comparison also suggests that the bias is not of
concern and the variance is a dominating factor when comparing the IMSEs. The proposed
AIC (8) chose the correct number of principal components, K = 2, for around 95 out of 100
samples in each situation of the model-selected scenario (a total of 400 samples: non-sparse or
sparse and normal or mixture). Regarding computational efficiency, the IPS procedures pro-
posed (methods 3 and 4) usually converge very quickly, with no more than four iterations with
tolerance (10) equal to 10−4 in all the simulation runs. In addition, the computational times for
a sparse and a non-sparse sample are about, on a Pentium-M 1.6G laptop, 1 min and 10 min
respectively.

We also compared the Monte Carlo estimates of the integrated squared prediction error IPE
of the true curves Xi obtained by methods 1–4 from those simulated samples, i.e.

IPE=
n∑

i=1

∫ 10

0
{Xi.t/−X̂

K
i .t/}2 dt=n,

whereX̂
K
i .t/= µ̂.t/+ΣK

k=1 ξ̂ik φ̂k.t/, reported in Table 1. It is seen that the IPS procedures (meth-
ods 3 and 4) improve the prediction errors by around 10%, and methods 3 and 4 gave comparable
results. This is consistent with the previous observations which were obtained from comparing
the IMSEs of the mean estimates regarding the superior performance of the IPS procedures
proposed.

5. Application to yeast cell cycle gene expression data

Time course gene expression data (factor synchronized) for the yeast cell cycle were obtained
by Spellman et al. (1998). The experiment started with a collection of yeast cells, whose cycles
were synchronized (α-factor based) by a chemical process. There are 6178 genes in total, and
each gene expression profile consists of 18 data points, measured every 7 min between 0 and
119 min, covering two cell cycles. Of these genes, 92 had sufficient data and were identified by
traditional biological methods, of which 43 are known to be related to the G1 phase regulation
that is of interest. To demonstrate the method proposed, the 43 genes related to the G1 phase
are used in the following analysis; Fig. 1. The gene expression level measurement at each time
point is obtained as a logarithm of the expression level ratio.

Two estimates of the mean function are shown in Fig. 1(b). The first mean estimate was
obtained by using the proposed IPS procedure with initial estimates given by local polynomial
smoothing (15). Using expression (11) and the penalized spline approximation µ.t/ ≈ BT

q .t/β,
an approximate 95% pointwise confidence interval was also constructed. The second mean
estimate was obtained by traditional local polynomial smoothing (15) (i.e. with no iteration),
where the bandwidth hµ and the smoothing parameter λÅ were chosen by leave out one curve
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Fig. 1. (a) Gene expression profiles of 43 genes from the G1 phase and (b) estimated mean functions
obtained with traditional non-iterative local polynomial smoothing (15) (- - - - - - -) and the proposed IPS pro-
cedure ( ) with initial mean estimates given by expression (15) for the 43 G1 phase genes as well as an
approximate pointwise 95% confidence interval (. . . . . . .) obtained by expression (11)
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Fig. 2. (a) Smooth estimate of the covariance surface and (b) three eigenfunctions obtained using the IPS
procedure proposed, for the G1 phase yeast cell cycle gene expression profiles
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Fig. 3. Observed (�) and estimated gene expression profiles obtained by using the IPS procedure pro-
posed ( ) and the traditional non-iterative functional principal component analysis combined with local
polynomial smoothing (– – –) for four randomly selected genes related to the G1 phase

cross-validation and its generalized version. The iterative procedure converged in three iterations
with tolerance (10) set to 10−4. We find that, when compared with the traditional non-iterative
method, the mean function that is estimated by IPS reveals more clearly the features of the
regions with high curvature, i.e. peaks or valleys for the G1 phase genes. Another feature of
the mean pattern for the G1 phase genes is a delay after the second peak around 100 min in
the yeast cell cycle which can also be seen from the original data that are displayed in Fig. 1(a).
This is detected by the mean estimate that is obtained by using the method proposed, whereas
the estimate that is obtained by the traditional approach with no iteration does not provide any
information for this feature.

The smooth covariance surface estimate that is obtained by using the IPS procedure proposed
is displayed in Fig. 2(a), where the bandwidth hG is chosen by leave out one curve cross-valida-
tion in each iteration, as well as hV as in expression (4). This surface estimate reveals the periodic
structure of variation patterns of the underlying process for the yeast cell cycle. We use the first
three eigenfunctions chosen by AIC (8) to approximate the expression profiles (Fig. 2(b)). The
estimates of these three leading eigenfunctions also reflect periodicity as well as an overall shift,
explaining around 91% of the total variation.
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We randomly select four genes and present the predicted profiles

X̂i.t/= µ̂.t/+
K∑

k=1
ξ̂ik φ̂k.t/,

where ξ̂ik are as in equation (7), in Fig. 3. The predicted trajectories are obtained by using
IPS with initial mean estimated by local polynomial smoothing (15), and also the traditional
method using local polynomial estimation for the mean and covariance as described in steps
1–4 of Section 3.1. We find that the IPS fitting proposed provides better prediction compared
with the traditional non-iterative method, as the observed data are more effectively recovered
particularly for the regions with high curvature (peak or valley). We also compare the mean
prediction error, which is a global measure of discrepancy defined as

MPE= 1
n

n∑
i=1

ni∑
j=1

{Yij − Ŷi.tij/}2

ni
:

The IPS procedure proposed gives MPE=0:120, whereas the traditional approach yields MPE=
0:138, which indicates a reduction of about 15%. From the above evidence, we conclude that
the iterative IPS procedure proposed indeed improves on the traditional non-iterative approach
for the modelling of functional data.

6. Concluding remarks

In this paper a new method for performing functional principal component analysis that uses
penalized spline regression has been presented. For reducing the within-subject correlation that
is commonly found in functional or longitudinal data, an iterative estimation procedure was
proposed to improve the estimation of the mean function. Through an analytic derivation of
its asymptotic properties, IPS fitting was shown to provide a sample of transformed data which
are asymptotically equivalent to independent data. From the investigation of theoretical prop-
erties, and the encouraging numerical results that were obtained by simulations and the real
data example, we can see that, when comparing with traditional non-iterative methods, signifi-
cant improvements can be achieved by the approach proposed. Another attractive property of
the method is that it allows simple covariate incorporation and straightforward approximate
inference.
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Appendix A

A.1. Assumptions and notation
Define the local linear scatterplot smoothers for µ.t/ through minimizing

n∑
i=1

ni∑
l=1

K1

(
tij − t

hµ

)
{Yij −β0 −β1.t − tij/}2, .15/

with respect to β0 and β1, leading to µ̂.0/.t/= β̂0.t/.
Without loss of generality, we consider the case of a single group throughout the appendix, i.e. g= 1.

Recall that K1 and K2 are compactly supported densities with zero means and finite variances, and that
hµ = hµ.n/, hG = hG.n/ and hV = hV .n/ are the bandwidths for estimating µ̂.0/ in expression (15), Ĝ.0/ in
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expression (3) and V̂ .0/ in expression (4). We develop asymptotics as the number of subjects n→∞, and
require

(a) hµ →0, hV →0, nh4
µ →∞, nh4

V →∞, nh6
µ <∞ and nh6

V <∞, and
(b) hG →0, nh6

G →∞ and nh8
G <∞.

The time points {tij}i=1,:::,n;j=1,:::,ni
here are considered deterministic. Denote the sorted time points across

all subjects as aX � t.1/ � . . . � t.Nn/ �bX, and ∆n =max{t.k/ − t.k−1/ : k =1, . . . , N +1}, where Nn =Σn
i=1 ni,

T = [aX, bX], t.0/ =aX and t.N+1/ =bX. For the ith subject, suppose that the time points tij have been ordered
non-decreasingly. Let ∆in = max{tij − ti,j−1 : j = 1, . . . , ni + 1} and ∆Å

n = max{∆in : i = 1, . . . , n}, where
ti0 = aX and ti,ni+1 = bX. Also denote n̄ = n−1Σn

i=1 ni. To obtain uniform consistency, we require both the
pooled data across all subjects and also the data from each subject to be dense in the time domain T .
Assume that

(c) ∆n =O.min{n−1=2h−1
µ , n−1=2h−1

V , n−1=4h−1
G }/ and

(d) n̄→∞, max{ni : i=1, . . . , n}�Cn̄ for some C> 0, and ∆Å
n =O.1=n̄/, as n→∞.

Fourier transforms of K1.u/ and K2.u, v/ are denoted by κ1.t/ = ∫
exp.−iut/K1.u/ du and κ2.t, s/ =∫

exp{−.iut + ivs/}K2.u, v/ du dv respectively. They satisfy the conditions that

(e) κ1.t/ is absolutely integrable, i.e.
∫ |κ1.t/|dt<∞, and

(f) κ2.t, s/ is absolutely integrable, i.e.
∫ ∫ |κ2.t, s/|dt ds<∞.

Assume that the fourth moment of Y.t/ is uniformly bounded for all t ∈T , i.e. that

(g) supt∈T [E{Y 4.t/}] <∞.

Define the rank 1 operator f ⊗ g= 〈f , h〉y, for f , h ∈ H , and denote the separable Hilbert space of
Hilbert–Schmidt operators on H by F ≡σ2.H/, endowed by 〈T1, T2〉F = tr.T1T

Å
2 / =Σj 〈T1uj , T2uj〉H and

‖T‖2
F =〈T , T 〉F , where T1, T2, T ∈F , and {uj :j �1} is any complete orthonormal system in H . The covari-

ance operators G and Ĝ respectively are generated by the kernels G and Ĝ, i.e. G.f/ = ∫
T G.s, t/ f.s/ ds

and Ĝ.f/=∫
T Ĝ.s, t/ f.s/ ds.

Let Ii = {j :λj =λi} and I ′ = {i : |Ii| = 1}, where |Ii| denotes the number of elements in Ii. Let Pj =
Σk∈Ij

φk ⊗φk and P̂j =Σk∈Ij
φ̂k ⊗ φ̂k denote the true and estimated orthogonal projection operators from

H to the subspace that is spanned by {φk : k ∈Ij}. For fixed j, let

δj = 1
2 min{|λl −λj| : l �∈Ij}, .16/

and let Λδj ={z∈C : |z−λj|=δj}, where C stands for the set of complex numbers. The resolvents of G and
Ĝ respectively are denoted by R and R̂, i.e. R.z/= .G − zI/−1 and R̂.z/= .Ĝ − zI/−1. Let

Aδj = sup{‖R.z/‖F : z∈Λδj }: .17/

Let K =K.n/ denote the numbers of leading eigenfunctions that are included to approximate X.t/:

X̂i.t/= µ̂.0/.t/+
K∑

k=1
ξ̂.0/

ik φ̂
.0/

k .t/,

suppressing the notation of the first iteration of K for simplicity, i.e. K=K.0/. Denote‖π‖∞ =supt∈T {|π.t/|}
for an arbitrary function π.·/ with support T . We assume that the number K of eigenfunctions included
depends on the sample size n, such that, as n→∞,

(h) K →∞ and υn =ΣK
k=1 δkAδk ‖φk‖∞=.n1=2h2

G −Aδk /→0 and
(i) ΣK

k=1 ‖φk‖∞ =o.min{n1=2hµ, n̄1=2}/ and ΣK
k=1 ‖φk‖∞‖φ′

k‖∞ =o.n̄/.

Assumptions (h) and (i) describe how the number of included eigenfunctions K increases when n→∞.
The quantities δk reflect the decay of the eigenvalues of the covariance operators, whereas Aδk depend on
the local properties of the covariance operator G around the eigenvalues λk. In practice, the eigenvalues
usually decrease rapidly to 0; the number of included eigenfunctions K is much less than n, i.e. n � K,
which suggests that assumptions (h) and (i) can be easily fulfilled for such processes. Moreover, the process
X is assumed to process the property

(j) E.‖X‖2
∞ +‖X′‖2

∞/<∞ and E[{supt∈T |X.t/−XK.t/|}2]=o.n/, where XK.t/=µ.t/+ΣK
k=1 ξik φk.t/.
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To apply the asymptotic results for penalized spline regression that were developed for independent
data in Hall and Opsomer (2005), we adopt the following notation. Recall that the independent theoreti-
cal working data YÅ

ij =Yij −Σ∞
k=1 ξik φk.t/ can also be written as YÅ

ij =µ.t/+"ij . Denote the penalized spline
approximation of µ.t/ by µ.t;β, q/=Σq

l=1 βl bl.t/. A typical example is the power basis of degree p with k
knots, i.e. bl.t/= tl, for 0� l�p, and bl.t/= .t −κl−p/

p
+, for p+1� l�k, where q=p+k +1. If the theoret-

ical working data are used, the penalized spline estimator of µ.t/ is obtained by minimizing expression (2)
with Yij replaced by YÅ

ij , denoted by µ̃.t/, whereas the estimator that is obtained by fitting the empirical
working data is denoted by µ̂.t/. According to Hall and Opsomer (2005), the basis functions involving
knots are written as continuous functions of the knots, e.g. b.t|κ/ = .t − κ/

p
+ for a power basis, where

κ∈T , so that bl.t/=b.t|κl−p/ for l�p+1. Let a.t/ be the asymptotic value of the proportion of knots κj ,
j �q−p, which are distributed in a neighbourhood of t ∈T , as q increase. The following assumptions (k)–
(m) are sufficient to derive the uniform convergence of the hypothetical penalized spline estimator µ̃, as
shown in Hall and Opsomer (2005). Assume that

(k) the number of knots tends to ∞ for fixed degree p, as n→∞, such that a.t/ is bounded away from
0 and ∞ on T .

For the spline basis function b.t|κ/, define a functional operator ψ by letting

ψ.u, v/=
∫

T
b.t|u/b.t|v/ dv

and taking the operator to be the functional which maps any square integrable function α to ψα, defined
by

.ψα/.u/=
∫

T
ψ.u, v/α.v/ dt:

In what follows, we use the same symbol for both the operator and its ‘kernel’. Let µÅ.t/=µ.t/−Σp
l=1 bl.t/,

and define the function βÅ to be the solution of

µÅ.t/=
∫

T
βÅ.s/b.t|s/ a.s/ ds

for all t ∈T .

(l) supt∈T {
∫

T b.t|s/2 ds}<∞, the operator ψ is non-singular and βÅ is square integrable, i.e.
∫

T β
Å.t/2

dt<∞.

Let {ρj}j=1,::: and {ψj}j=1,::: be the non-decreasing eigenvalues and corresponding eigenfunctions of the
operator ψ. We require that

(m) Σ∞
j=1|

∫
T β

Å.t/ψj.t/ dt|+Σ∞
j=1

√{ρj log.j/}<∞, and λÅ →0 sufficiently slowly as n→n, such that
n−1=2 Σ∞

j=1

√{ρj log.j/}=.ρj +λÅ/→0, where λÅ =λÅ.n/ is the smoothing parameter for obtaining
µ̃.t/.

Recall that g.y; t/ is the density function of Y.t/ and g2.y1, y2; t1, t2/ is the density of .Y.t1/, Y.t2//. Appro-
priate regularity assumptions will be imposed for these density functions.

We first derive a lemma that is useful to obtain uniform consistency of the mean and covariance estimates
by analogy with lemma 1 in Yao et al. (2005). This lemma is particularly derived for the case of determin-
istic design points tij , whereas the random design was discussed in Yao et al. (2005). For simplicity, we
address only the univariate case. The following assumptions (n)–(s) which are only required for this lemma
are listed as follows. Let ν and l be given integers, with 0�ν<l.

(n) .dl=dtl/g.y; t/ exists and is uniformly continuous on �×T .

We say that a univariate kernel function K1 is of order .ν, l/, if
∫

uq K1.u/ du equals .−1/ν ν! for q =ν, a
non-zero constant for q = l and 0 otherwise. The assumptions for the kernel function K1 : �→� are as
follows.

(o) K1 is a compactly supported kernel function of order .ν, l/, and ‖K1‖2 =∫
K2

1.u/ du<∞.

The following auxiliary results provide the weak uniform convergence rate for a general form of univariate
weighted averages defined below; see Bhattacharya and Müller (1993) and Yao et al. (2005). For a positive
integer q�1, let .ψp/p=1,:::,q be a collection of real functions ψp :�2 →� which satisfy the conditions
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(p) ψp are uniformly continuous on T ×�,
(q) the functions .dl=dtl/ψp.t, x/ exist for all arguments .t, x/ and are uniformly continuous on T ×�

and
(r) supt∈T {

∫
ψ2

p.t, x/g.x; t/ dx dt}<∞:

Bandwidths hµ =hµ.n/ used for one-dimensional smoothers are assumed to satisfy

(s) hµ →0, nhν+1
µ →∞, nh2l+2

µ <∞, ∆n =O{1=.n1=2hν+1
µ /} and max{ni : i=1, . . . , n}�Cn̄, as n→∞.

Define the weighted averages

Ψpn =Ψpn.t/

= 1
nhν+1

µ

n∑
i=1

1
n̄

ni∑
j=1

ψp.tij , Yij/K1

(
t − tij

hµ

)
, p=1, . . . , q,

and the quantity

µp =µp.t/

= dν

dtν

∫
ψp.t, x/g.x; t/ dx, p=1, . . . , q:

A.2. Auxiliary results and proofs of main theorems

Lemma 1. Under assumptions (e) and (n)–(s), τpn = supt∈T |Ψpn.t/−µp|=Op{1=.n1=2hν+1
µ /}.

This can be shown by essentially following the proof of lemma 1 in Yao et al. (2005), with modifications
for deterministic time points tij using assumptions (c) and (d).

Following the arguments that were used in the proofs of theorems 1 and 2 of Yao et al. (2005) with slight
modifications and extending lemma 1 to a two-dimensional smoother lead to lemma 2.

Lemma 2. Let hµ, hG and hV be the bandwidths that are used in the local polynomial smoothing
steps for µ̂.0/.t/ in expression (15), Ĝ.0/.s, t/ in expression (3) and V̂ .0/.t/ in expression (4). Under assump-
tions (a)–(c) and (e)–(h) and appropriate regularity assumptions for g.y; t/ and g2.y1, y2; t1, t2/,

sup
t∈T

|µ̂.0/.t/−µ.t/|=Op

(
1

n1=2hµ

)
,

sup
s,t∈T

|Ĝ.0/.s, t/−G.s, t/|=Op

(
1

n1=2h2
G

)
:

.18/

Considering eigenvalues λk of multiplicity 1, φ̂k can be chosen such that

sup
t∈T

|φ̂.0/

k .t/−φk.t/|=Op

(
δkAδk

n1=2h2
G −Aδk

)
,

λ̂.0/
k −λk =Op

(
δkAδk

n1=2h2
G −Aδk

)
,

.19/

where the Op.·/ terms in equations (19) hold uniformly over all k, and δk and Aδk are defined respectively
by equations (16) and (17) in Appendix A.1. As a consequence of equations (18),

sup
t∈T

|σ̂2,.0/.t/−σ2,.0/.t/|=Op

{
max

(
1

n1=2h2
G

,
1

n1=2hV

)}
: .20/

We remark that, though lemma 2 is similar to theorems 1 and 2 of Yao et al. (2005), the results in this
paper are developed for deterministic observation times, i.e. a fixed design, whereas the results in Yao et al.
(2005) are valid only for random observation times tij that are required to be independently and identically
distributed.

The uniform convergence of the hypothetical penalized spline estimator µ̃ was derived in section 4.2
and the appendix of Hall and Opsomer (2005). Here we put this result in lemma 3.
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Lemma 3. Let λÅ be the smoothing parameter that is used for obtaining the hypothetical penalized
spline estimator µ̃.t/. Under assumptions (k)–(m) and appropriate regularity assumptions for g.y; t/,

sup
t∈T

|µÅ.t/−µ.t/|=Op.ωn/, where ωn = 1
n1=2

∞∑
j=1

√{ρj log.j/}
ρj +λÅ +

∞∑
j=1

λÅ|∫T βÅ.t/ψj.t/ dt|
ρj +λÅ : .21/

We now consider the proof of theorem 1. With υn as in assumption (h) we define the quantities θin and
θÅn that are related to the rate of convergence of sup1�j�ni

|YÅ
ij − Ŷ

Å.0/
ij | as follows. Let

θin =υn{‖Xi‖∞ ‖X′
i‖∞ ∆Å

n +
ni∑

j=2
|"ij|.tij − ti,j−1/}+

(
1

n1=2hµ
+∆Å

n

1=2
)

K∑
k=1

‖φk‖∞ +
K∑

k=1

δkAδk |ξik|
n1=2h2

G −Aδk

+∆Å
n

K∑
k=1

‖φk‖∞ ‖φ′
k‖∞.‖Xi‖∞ +‖X′

i‖∞/+ sup
t∈T

|Xi.t/−XK
i .t/|, .22/

θÅn =υn +
K∑

k=1
‖φk‖∞

(
1

n1=2hµ
+∆Å

n

1=2
)

+∆Å
n

K∑
k=1

‖φk‖∞ ‖φ′
k‖∞ +n−1=2 E1=2[{sup

t∈T
|X.t/−XK.t/|}2], .23/

where

XK.t/=µ.t/+
K∑

k=1
ξk φk.t/:

A.2.1. Proof of theorem 1
We note that the observation times tij for the ith subject are deterministic and non-decreasingly ordered.
We first prove result (12). Let

η̂ik =
ni∑

j=2
{Xi.tij/− µ̂.0/.tij/} φ̂

.0/

k .tij/.tij − ti,j−1/,

η̃ik =
ni∑

j=2
{Xi.tij/−µ.tij/}φk.tij/.tij − ti,j−1/,

τ̂ik =
ni∑

j=2
"ij φ̂

.0/

k .tij/.tij − ti,j−1/,

τ̃ik =
ni∑

j=2
"ij φk.tij/.tij − ti,j−1/,

and obviously ξ̂.0/
ik = η̂ik + τ̂ik. Let ‖φk‖K

∞ =max1�k�K.‖φk‖∞/. Note that

sup
1�k�K

|ξ̂.0/
ik − ξik|� sup

1�k�K

.|η̂ik − η̃ik|+ |η̃ik − ξik|+ |τ̂ik|/: .24/

Without loss of generality, assume that ‖φk‖∞ � 1, ‖φ′
k‖∞ � 1, ‖Xi‖∞ � 1 and ‖X′

i‖∞ � 1. Then assump-
tion (h) implies that υ̃n = sup1�k�K{δkAδk =.n1=2h2

G −Aδk /}→0. Note that ΣK
k=1 ‖φk‖∞ ‖φ′

k‖∞=n̄→0 implies
that sup1�k�K.‖φk‖∞ ‖φ′

k‖∞ ∆Å
n / → 0. The first term on the right-hand side of inequality (24) is thus

bounded in probability by

sup
1�k�K

[
ni∑

j=2
{|Xi.tij/− µ̂.0/.tij/||φ̂.0/

k .tij/−φk.tij/|+ |µ̂.0/.tij/−µ.tij/||φk.t/|}.tij − ti,j−1/

]

�
[

ni∑
j=1

{|Xi.tij/|+ |µ.tij/|+1}2.tij − ti,j−1/

]1=2

sup
1�k�K

[
ni∑

j=2
{φ̂.0/

k .tij/−φk.tij/}2.tij − ti,j−1/

]1=2

+
[

ni∑
j=1

{µ̂.0/.tij/−µ.tij/}2.tij − ti,j−1/

]1=2

sup
1�k�K

{
ni∑

j=2
φ2

k.tij/.tij − ti,j−1/

}1=2

�{c1.‖Xi‖L2 +‖Xi‖∞ ‖X′
i‖∞ ∆Å

n /+ c2}υ̃n +{1+ sup
1�k�K

.‖φk‖∞ ‖φ′
k‖∞ ∆Å

n /} 1
n1=2hµ

p→0, .25/
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where ‖Xi‖L2 ={
∫

T X2
i .t/ dt}1=2, for some constants c1 and c2 that do not depend on i and k, given assump-

tions (d), (h) and (i). The second term on the right-hand side of inequality (24) has an upper bound in
probability,

sup
1�k�K

|η̃ij − ξik|� sup
1�k�K

{‖.Xi +µ/′φk + .Xi +µ/φ′
k‖∞ ∆Å

n }

� sup
1�k�K

.‖Xi‖∞ ‖φk‖∞ +‖X′
i‖∞ ‖φk‖+ c3‖φk‖∞ + c4‖φk‖∞/∆Å

n

� .c5‖Xi‖∞ + c6‖X′
i‖∞ + c7/ sup

1�k�K

.‖φ′
k‖∞ ∆Å

n /
p→0, .26/

for some constants c3, . . . , c7 that do not depend on i and k.
For the third term on the right-hand side of inequality (24), it is sufficient to show that

K∑
k=1

|τ̂ik| ‖φk‖∞
p→0:

Note that

|τ̂ik|� |τ̃ik|+
ni∑

j=2
|"ij| |φ̂.0/

k .tij/−φk.tij/|.tij − ti,j−1/:

We have E.τ̃ik/=0 and

var.τ̃ik/=
ni∑

j=2
σ2.tij/φ

2
k.tij/.tij − ti,j−1/

2

� sup
t∈T

{σ2.t/.1+2‖φk‖∞ ‖φ′
k‖∞ ∆Å

n /∆Å
n }

�2 sup
t∈T

{σ2.t/∆Å
n },

which implies that, in probability,

K∑
k=1

|τ̃ik|‖φk‖∞ � [2 sup
t∈T

{σ2.t/∆Å
n }]

1=2 K∑
k=1

‖φk‖∞ →0

by assumption (i). Also observing that

K∑
k=1

ni∑
j=2

|"ij||φ̂.0/

k .tij/−φk.tij/|.tij − ti,j−1/‖φk‖∞ �υn

ni∑
j=2

|"ij|.tij − ti,j−1/,

and

E

{
ni∑

j=2
|"ij|.tij − ti,j−1/

}
� |T | sup

t∈T
{σ.t/},

this implies that Σni
j=2 |"ij|.tij − ti,j−1/=Op.1/. Then we have

K∑
k=1

|τ̂ik|‖φk‖∞
p→0:

Then result (12) follows.
To prove result (13), it is sufficient to show that

sup
t∈T

∣∣∣∣
K∑

k=1
ξ̂.0/

ik φ̂
.0/

k .t/−
∞∑

k=1
ξik φk.t/

∣∣∣∣� sup
t∈T

∣∣∣∣
K∑

k=1
{ξ̂.0/

ik φ̂
.0/

k .t/− ξik φk.t/}
∣∣∣∣+ sup

t∈T

∣∣∣∣
∞∑

k=K+1
ξik φk.t/

∣∣∣∣ p→0: .27/

The second term converging to 0 in probability is guaranteed by the Karhunen–Loève theorem, provided
that K →∞ as n→∞. We now focus on the first term,
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sup
t∈T

∣∣∣∣
K∑

k=1
{ξ̂.0/

ik φ̂
.0/

k .t/− ξik φk.t/}
∣∣∣∣�

K∑
k=1

|ξ̂.0/
ik − ξik|.‖φk‖∞ + υ̃n/+

∣∣∣∣
K∑

k=1
ξik{φ̂

.0/

k .t/−φk.t/}
∣∣∣∣

≡Q1.n/+Q2.n/:

Observing that

E|Q2.n/|�
K∑

k=1
δkAδk E|ξik|=.n1=2h2

G −Aδk /�
K∑

k=1
δkAδkλ

1=2
k =.n1=2h2

G −Aδk /

and λk →0, we have E|Q2.n/|=O.υn/, i.e. Q2.n/=Op.υn/. It is easy to see that

Q1.n/�2
K∑

k=1
|ξ̂.0/

ik − ξik|‖φk‖∞

for large n. Note that

K∑
k=1

|ξ̂.0/
ik − ξik|‖φk‖∞ �

K∑
k=1

|η̂ik − η̃ik|‖φk‖∞ +
K∑

k=1
|η̃ik − ξik|‖φk‖∞ +

K∑
k=1

|τ̂ik|‖φk‖∞: .28/

By analogy with inequality (25), given assumptions (d), (h) and (i), the first term on the right-hand side of
inequality (28) is bounded in probability by

{c1.‖Xi‖L2 +‖Xi‖∞ ‖X′
i‖∞ ∆Å

n /+ c2}υn +
(

1+
K∑

k=1
‖φk‖∞ ‖φ′

k‖∞ ∆Å
n

) K∑
k=1

‖φk‖∞

n1=2hµ

p→0:

The second term on the right-hand side of inequality (28) is bounded in probability by

.c5‖Xi‖∞ + c6‖X′
i‖∞ + c7/

K∑
k=1

‖φk‖∞ ‖φ′
k‖∞ ∆Å

n

p→0:

For the third term on the right-hand side of inequality (28), we have already shown that

K∑
k=1

|τ̂ik|‖φk‖∞
p→0:

From the above proof, we can see that sup1�j�ni
|YÅ

ij −Y
Å.0/
ij |=Op.θin/ where the Op.·/ holds uniformly

over all is, and θin is defined in equation (22). On the basis of theorem 1 and lemma 3, we can derive
the uniform convergence of the penalized spline estimator µ̂.t/ and thus the covariance estimator Ĝ.s, t/
obtained by expression (3). Then the uniform consistency of other model components, including eigen-
functions and eigenvalues, can be obtained in a similar manner to that in lemma 1.

A.2.2. Proof of theorem 2
Recall that the hypothetical penalized spline estimator µ̃.t/ is obtained by fitting the theoretical working
data YÅ

ij , whereas µ̂.t/ is obtained by using Ŷ
Å.0/
ij as input. Let G̃ denote the hypothetical covariance estima-

tor that is obtained by expression (3) using µ̃.t/ as mean estimate, whereas Ĝ is obtained by expression (3)
using µ̂.t/ as mean estimate. Since linear smoothers, including penalized spline fitting, are weighted aver-
ages, and as expression (14) implies that Ŷ

Å.0/
ij =YÅ

ij +Op.θin/, where the Op.·/ is uniform over j, it follows
that supt∈T |µ̂.t/ − µ̃.t/| = Op.θ̄n/ and sups,t∈T |Ĝ.s, t/ − G̃.s, t/| = Op.θ̄n/, where θ̄n = Σn

i=1θin. Observing
assumption (j) and

E.‖X‖∞‖X′‖∞/�{E.‖X‖2
∞/E.‖X′‖2

∞/}1=2 <∞,

E

{
ni∑

j=2
|"ij|.tij − ti,j−1/

}
� |T | sup

t∈T
{σ.t/}<∞

and

E

{
K∑

k=1
δkAδk |ξik|=.n1=2h2

G −Aδk /

}
�

K∑
k=1

δkAδkλ
1=2
k =.n1=2h2

G −Aδk /�υn,
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we have that

θ̄n =Op.θÅn /
p→0,

where θÅn is defined in equation (23). In view of the convergence results in lemma 3, this leads to the results
(14). In fact, we have the uniform convergence rate of µ̂.t/ and Ĝ.t/ as follows:

sup
t∈T

|µ̂.t/−µ.t/|=Op.ωn +θÅn /,

sup
s,t∈T

|Ĝ.s, t/−G.s, t/|=Op

(
ωn +θÅn + 1

n1=2h2
G

)
,

.29/

where ωn is as in expression (21), θÅn is as in equation (23) and hG is the bandwidth that is used for the
covariance smoothing (3).
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