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Summary. In longitudinal data analysis one frequently encounters non-Gaussian data that are
repeatedly collected for a sample of individuals over time. The repeated observations could be
binomial, Poisson or of another discrete type or could be continuous.The timings of the repeated
measurements are often sparse and irregular. We introduce a latent Gaussian process model
for such data, establishing a connection to functional data analysis. The functional methods
proposed are non-parametric and computationally straightforward as they do not involve a likeli-
hood. We develop functional principal components analysis for this situation and demonstrate
the prediction of individual trajectories from sparse observations.This method can handle miss-
ing data and leads to predictions of the functional principal component scores which serve as
random effects in this model.These scores can then be used for further statistical analysis, such
as inference, regression, discriminant analysis or clustering. We illustrate these non-parametric
methods with longitudinal data on primary biliary cirrhosis and show in simulations that they
are competitive in comparisons with generalized estimating equations and generalized linear
mixed models.

Keywords: Binomial data; Eigenfunction; Functional data analysis; Functional principal
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1. Introduction

1.1. Preliminaries
When undertaking prediction in longitudinal data analysis involving irregularly spaced and
infrequent measurements, relatively little information is often available about each subject,
owing to sparse and irregular measurements. Irregularity of measurements for individual
subjects is an inherent difficulty of such studies. Therefore it is especially important to use
all the information that can be accessed. This requires us to model the relationships between
measurements that are made at widely separated time points. We aim at a flexible non-para-
metric functional data analysis approach, which is in contrast with commonly used parametric
models such as generalized linear mixed models (GLMMs) or generalized estimation equations
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(GEEs)—see, for example, Heagerty (1999) for recent discussions on applying such models
to repeated binary measurements, Pourahmadi (2000) for related aspects of covariance mod-
elling and Heagerty and Zeger (2000), Heagerty and Kurland (2001) and Chiou and Müller
(2005) for discussions on limitations, modifications and feasibility of the underlying parametric
assumptions.

A non-parametric functional approach for the analysis of longitudinal data, with its philos-
ophy to let the data speak for themselves and its inherent flexibility, is expected to perform
better than the parametric GEE or GLMM approaches in many situations. However, it faces
difficulties due to the potentially large gaps between repeated measurements in typically sparse
longitudinal data. The parametric methods overcome this easily by postulating a parametric
form of the underlying functions. In contrast, in the presence of such gaps, the classical non-
parametric approach to smooth individual trajectories in a first step is not feasible (Yao et al.,
2005). The problems that are caused by gaps are exacerbated in the commonly encountered case
of non-Gaussian longitudinal responses such as binomial or Poisson responses (see Section 5).

We demonstrate how one can overcome the difficulties that are posed by such data for non-
parametric approaches, by applying suitably modified methods of functional data analysis.
Functional data analysis methods have been primarily developed for smooth and densely sam-
pled data (Ramsay and Silverman, 2002, 2005). The basic idea to connect the data that we wish
to analyse to functional data analysis methodology is to postulate an underlying latent Gaussian
process (LGP) (for other examples of latent process modelling for longitudinal studies compare,
for example, Diggle et al. (1998), Jowaheer and Sutradhar (2002), Hashemi et al. (2003) and
Proust et al. (2006)). Specifically, the Gaussian property makes it possible to overcome sparseness
by a conditioning argument. Relevant features of the stochastic relationships of the observed
data are reflected by the mean and covariance properties of this LGP. Simulations indicate that
the method is in practice quite insensitive to the Gaussian assumption for the latent process.

Since sufficiently flexible parameterizations of the underlying Gaussian process would suffer
from a large number of parameters, making corresponding maximum likelihood approaches
computationally demanding and unstable, we propose instead to connect the LGP to random
trajectories for individual observations directly by means of a link function. These subject-
specific trajectories correspond to the probabilities of a response in the binary response case.
Whereas the link function is assumed known, the mean and covariance of the Gaussian process
are assumed to be unknown but smooth. This proposition is attractive on grounds of flexibility,
but it raises the challenging problem of constructing appropriate estimators.

The methodology proposed is a first attempt to extend functional data analysis technology
to the case of non-Gaussian repeated measurements. Prominent examples for such data are
repeated binary measurements or repeated counts. The methods proposed are motivated by
several considerations: the variation of random coefficients may be relatively low, and in this
case a simple Taylor approximation motivates simple, explicit and non-parametric mean and
covariance function estimators; and these estimators are elementary to compute, irrespectively
of whether the low variation assumption is satisfied or not. The simple, low variation estimators
that we propose are attractive owing to their flexibility and numerical simplicity.

The analysis of continuous Gaussian sparse longitudinal data by functional methods has
been considered previously (e.g. Shi et al. (1996), Rice and Wu (2000), James et al. (2001) and
James and Sugar (2003)). Our main tool from functional data analysis is functional principal
component (FPC) analysis, where observed trajectories are decomposed into a mean function
and eigenfunctions (e.g. Rice and Silverman (1991) and Boente and Fraiman (2000)). Various
aspects of the relationship between functional and longitudinal data are discussed in Staniswalis
and Lee (1998), Rice (2004) and Zhao et al. (2004); an early study of modelling longitudinal
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trajectories in biological applications with FPCs is Kirkpatrick and Heckman (1989). FPC
analysis allows us to achieve three major goals:

(a) dimension reduction of functional data by summarizing the data in a few FPCs;
(b) the prediction of individual trajectories from sparse data, by estimating the FPC scores

of the trajectories;
(c) further statistical analysis of longitudinal data based on the FPC scores.

In the next subsection, we introduce the LGP model; then in Section 2 the proposed esti-
mates, followed by applications to prediction (Section 3). The results from a simulation study,
including a comparison of the method proposed with GLMMs and GEEs, are reported in Sec-
tion 4. The analysis of non-Gaussian sparse longitudinal data is illustrated in Section 5, with
the longitudinal analysis of the occurrence of hepatomegaly in primary biliary cirrhosis. This
is followed by a brief discussion (Section 6) and an appendix, which contains derivations and
some theoretical results about estimation.

1.2. Latent Gaussian process model
Generally, denoting the generalized responses by Yij, we observe independent copies of Y , but,
in each case, only for a few sparse time points. In particular, the data are pairs .Tij, Yij/, for
1 � i � n and 1 � j � mi, where Yij = Yi.Tij/ for an underlying random trajectory Yi, and each
Tij ∈I = [0, 1]. The sparse and scattered nature of the observation times Tij may be expressed
theoretically by noting that the mis are uniformly bounded, if these quantities have a determin-
istic origin, or that they represent the values of independent and identically distributed random
variables with sufficiently light tails, if the mis originate stochastically. We are aiming at the
seemingly difficult task of making such sparse designs amenable to functional methods, which
have been primarily aimed at densely collected smooth data.

A central assumption for our approach is that the dependence between the observations Yij

is inherited from an underlying unobserved Gaussian process X : let Y.t/, for t ∈T , where T is
a compact interval, denote a stochastic process satisfying

E{Y.t1/. . . Y.tm/|X}=
m∏

j=1
g{X.tj/},

E{Y.t/2|X}�g1{X.t/}
.1/

for 0 � t1 < . . .< tm � 1 and 0 < t < 1. Here, X denotes a Gaussian process on I, g is a smooth,
monotone increasing link function, from the real line to the range of the distribution of the
Yij, and g1 is a bounded function. Although we observe independent copies of Y , these are
accessible only for a few sparse time points for each subject. The Gaussian processes Xi and
measurement times Tij, for 1� i�n and 1� j �mi, are assumed to be totally independent, the
Tijs are taken to be identically distributed as T , say, with support I and the Xis are supposed to
be identically distributed as X. When interpreted for the data .Tij, Yij/, model (1) implies that

E{Yi.Ti1/. . . Yi.Timi/|Xi.Ti1/, . . . , Xi.Timi/}=
mi∏

j=1
g{Xi.Tij/}: .2/

The assumption that X at model (1) is Gaussian provides a plausible way of linking stochastic
properties of Y.t/ for values t in different parts of I, so that data that are observed at each time
point can be used for inference about future values of Y.t/ for any specific value of t. The idea
of pooling data across subjects to overcome the sparseness problem is motivated as in Yao
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et al. (2005). The link function g is assumed known; for example we might select the logit link
in the binary data case, g.x/= exp.x/={1 + exp.x/}, and the log-link for count data; under some
circumstances, the link can also be estimated non-parametrically. An important special case of
model (1) is that of binary responses, i.e. 0–1 data, where the first identity in model (1) simplifies to

P{Y.t1/= l1, . . . , Y.tm/= lm|X}=
m∏

j=1
g{X.tj/}lj [1−g{X.tj/}]1−lj , .3/

for all sequences l1, . . . , lm of 0s and 1s. In this case, the link function g would be chosen as a
distribution function and the methodology proposed corresponds to an extension of functional
data analysis to longitudinal binary data.

2. Estimating mean and covariance of latent Gaussian processes

To use model (1) to make predictive inference about future values of Y.t/, we need to estimate
the defining characteristics of the process X , i.e. its mean and covariance structure. In a setting
where the distribution of Y can be completely specified, e.g. in the binary data model (3), one
possible approach would be maximum likelihood. This is, however, a difficult proposition in the
irregular case, where it would necessitate the specification of a large number of parameters for
the various means and covariances that are involved, a difficulty which can only be overcome
by invoking restrictive assumptions, limiting the flexibility of the approach. Moreover, we are
considering a non-stationary case, and the number of parameters would need to increase with
n, the sample size. Finally, another major motivation is to extend the functional approach to
non-Gaussian longitudinal data. To sustain the non-parametric flavour, we prefer not to make
stronger assumptions than model (1), and in particular we do not wish to make the restrictive
assumptions that would be necessary to employ maximum likelihood methods.

Our approach is based on the supposition that the variation of Xi about its mean is relatively
small. In particular, we assume that

Xi.t/=μ.t/+ δZi.t/, μ=E.Xi/, .4/

Zi is a Gaussian process with zero mean and bounded covariance and δ>0 is an unknown small
constant. In this case, assuming that g has four bounded derivatives, and writing .X, Z/ for a
generic pair .Xi, Zi/, we have

g.X/=g.μ/+ δZ g.1/.μ/+ 1
2δ

2Z2 g.2/.μ/+ 1
6δ

3Z3 g.3/.μ/+Op.δ4/, .5/

E[g{X.t/}]=g.μ/+ 1
2δ

2 E{Z2.t/} g.2/{μ.t/}+O.δ4/ .6/

and

cov[g{X.s/}, g{X.t/}]= δ2 g.1/{μ.s/} g.1/{μ.t/}cov{Z.s/, Z.t/}+O.δ4/: .7/

Here and throughout we make the assumption that g.1/ does not vanish, and that
inf s∈D{g.1/.s/}> 0, where D is the (compact) range of the mean function μ. Setting

α.t/=E[g{X.t/}],

ν.t/=g−1{α.t/},

τ .s, t/= cov[g{X.s/}, g{X.t/}]=g.1/{μ.s/} g.1/{μ.t/},

⎫⎪⎬
⎪⎭ .8/

we obtain



Modelling Generalized Longitudinal Observations 707

μ.t/=E{X.t/}=g−1.E[g{X.t/}]/+O.δ2/=ν.t/+O.δ2/, .9/

σ.s, t/= cov{X.s/, X.t/}= cov[g{X.s/}, g{X.t/}]
g.1/{μ.s/} g.1/{μ.t/} +O.δ4/= τ .s, t/+O.δ4/: .10/

These formulae immediately suggest estimators of μ and σ, if we are willing to neglect the
effect of orders O.δ2/. Indeed, we may estimate

α.t/=E{Y.t/}=E[E{Y.t/|X.t/}]=E[g{X.t/}], .11/

by passing a smoother through the data .Tij, Yij/, and estimate

β.s, t/=E{Y.s/Y.t/}=E[g{X.s/}g{X.t/}] .12/

(by using model (1)) by passing a bivariate smoother through the data ..Tij, Tik/, YijYik/ for
1� i�n such that mi �2, and 1� j, k �mi with j �=k. It is necessary to omit the diagonal terms
in this smoothing step, since according to model (1) we have

E{Y2.t/}=E[E{Y2.t/|X.t/}] >E[E{Y.t/|X.t/}]2 =E[g{X.t/}]2,

whenever var{Y.t/|X.t/} > 0, so the variance along the diagonal in general will have an extra
component, leading to a covariance surface that has a discontinuity along the diagonal. More
details about this phenomenon can be found in Yao et al. (2005). Implementation of these
smoothing steps, by using local least squares estimators, is discussed in Appendix A.

From the resulting estimators α̂ and β̂ of α and β respectively, we obtain estimators

ν̂.t/=g−1{α̂.t/},

τ̂ .s, t/={β̂.s, t/− α̂.s/ α̂.t/}=g.1/{ν̂.s/} g.1/{ν̂.t/}
.13/

for

ν.t/=g−1{α.t/},

τ .s, t/={β.s, t/−α.s/ α.t/}=g.1/{ν.s/} g.1/{ν.t/}
.14/

respectively. By virtue of approximations (9) and (10) we may interpret ν̂ and τ̂ as estimators of
μ and σ respectively, i.e. we set

μ̂.t/= ν̂.t/,

σ̂.s, t/= τ̂ .s, t/:
.15/

These estimators do not depend on the constant δ, which therefore does not need to be known
or estimated. Although the estimator τ̂ .s, t/ is symmetric, it will generally not enjoy the positive
semidefiniteness property that is required of a covariance function. This deficiency can be over-
come by implementing a method that was described in Yao et al. (2003), which is to drop from
the spectral decomposition of τ̂ those terms that correspond to negative eigenvalues. It is easy
to show that, in doing so, the mean-squared error of τ̂ is strictly improved by omitting a term
that corresponds to a negative eigenvalue; details can be found in Appendix B. In what follows,
we work with the resulting estimators τ̃ as defined in Appendix B. Properties of the estimators
α̂ and β̂, and ν̂ and τ̂ , which are defined at expressions (32), (33) and (13) respectively, and of
estimators μ̂ and σ̂ at expression (15) are discussed in Appendix C.
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3. Predicting individual trajectories and random effects

3.1. Predicting functional principal component scores
One of the main purposes of the functional data analysis model proposed is dimension reduc-
tion through predicted FPC scores. These lead to predicted trajectories of the underlying hidden
Gaussian process for the subjects in a study. Specifically, the predicted FPC scores provide a
means for regularizing the irregular data, and also for dimension reduction, and can be used
for inference, discriminant analysis or regression.

The starting point is the Karhunen–Loève expansion of random trajectories Xi of the LGP,

Xi.t/=μ.t/+
∞∑

j=1
ξij ψj.t/, .16/

whereψj are the orthonormal eigenfunctions of the linear integral operator B with kernel σ.s, t/,
that maps an L2-function f to Bf.s/=∫

σ.s, t/ f.t/ dt, i.e. the solutions of∫
cov{X.s/, X.t/} ψj.t/ ds=θj ψj.t/,

whereθj is the eigenvalue that is associated with eigenfunctionψj. Theξij =∫
{Xi.t/−μ.t/}ψj.t/dt

are the FPC scores that play the role of random effects, with E.ξij/=0 and var.ξij/=θj, where
θj is the eigenvalue corresponding to eigenfunction ψj. Once the estimator σ̂.s, t/ (15) has been
determined, the corresponding estimates θ̂j and ψ̂j of eigenvalues and eigenfunctions of latent
processes X are obtained by a standard discretization procedure, whereby these estimates are
derived from a discrete principal component analysis step.

We aim to estimate the best linear predictor

E{Xi.t/|Yi1, . . . , Yim}=
∞∑

j=1
E.ξij|Yi1, . . . , Yim/ ψj.t/ .17/

of the trajectory Xi, given the data Yi1, . . . , Yimi . Here a truncation of the expansion to include
only the first M components is needed. Then, focusing on the first M conditional FPC scores
will allow us to reduce the dimension of the problem and also to regularize the highly irregular
data. According to equation (17), the task of representing and predicting individual trajectories
can be reduced to that of estimating E.ξij|Yi1, . . . , Yim/. In what follows we develop a suitable
approximation in the non-Gaussian case by means of a moment-based approach, as follows.
The repeated measurements per subject are assumed to be generated by

Yik =Yi.Tik/=g{Xi.Tik/}+ eik, .18/

with independent errors eik, satisfying

E.eik/=0,

var.eik/=γ2 v[g{Xi.Tik/}]:
.19/

Here, γ2 is an unknown variance (overdispersion) parameter and v.·/ is a known smooth vari-
ance function, which is determined by the characteristics of the data. For example, in the case of
repeated binary observations, one would choose v.u/=u.1−u/. In what follows, we implicitly
condition on the measurement times Tij.

With a Taylor series expansion of g, using expression (4) and assuming as before that
inf{g.1/.·/}> 0, we obtain

g{X.t/}=g{μ.t/}+g.1/{μ.t/}{X.t/−μ.t/}+O.δ2/: .20/
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Defining

"ik = eik

g.1/{μ.Tik/} ,

Uik =μ.Tik/+ Yik −g{μ.Tik/}
g.1/{μ.Tik/} ,

expressions (19) and (20) lead to Uik =Xi.Tik/+ "ik +O.δ2/. We next substitute estimates (15)
and errors "ik by

ẽik =Zikγ
v[g{μ̂.Tik/}]1=2

g.1/{μ̂.Tik/} ,

where the Zik are independent copies of a standard Gaussian N.0, 1/ random variable, so that
the first two moments of ẽik are approximating those of "ik. Then, for small δ, Uik ≈Xi.Tik/+ ẽik,
implying that

E.ξij|Yi1, . . . , Yimi/=E.ξij|Ui1, . . . , Uimi/≈E{ξij|Xi.Ti1/+ ẽi1, . . . , Xi.Timi/+ ẽimi}:

Owing to the Gaussian assumption for latent processes Xi, the last conditional expectation is
seen to be a linear function of the terms on the right-hand side, and therefore

Ê.ξij|Yi1, . . . , Yimi/=AijX̃i .21/

is a reasonable predictor for the random effect ξij, where X̃i = .Xi.Ti1/+ ẽi1, . . . , Xi.Timi/+ ẽimi/
T

and the Aij are matrices depending only on γ,μ, v, g and g.1/. These quantities are either known
or estimates are available, with the sole exception of γ, the estimation of which is discussed
below. The explicit form of equation (21) is given in Appendix D.

3.2. Predicting trajectories
Motivated by equations (16) and (21), predicted trajectories for the LGPs are obtained as

X̂i.t/= Ê{Xi.t/|Yi1, . . . , Yimi}= μ̂.t/+
M∑

j=1
AijX̃i ψ̂j.t/, .22/

and predicted trajectories for the observed process Y as

Ŷ i.t/= Ê{Yi.t/|Yi1, . . . , Yimi}=g{X̂i.t/}, .23/

where t may be any time point within the range of processes Y , including times for which no
response was observed. Predicted values for Y.t/ can sometimes be used to predict the entire
response distribution when the mean determines the entire distribution, such as in binomial and
Poisson cases. This method could also be employed for the prediction of missing values in a
situation where missing data occur totally at random.

To evaluate the effect of auxiliary quantities on the prediction, we use a cross-validation cri-
terion where we compare predictions of Yik, which are obtained by leaving that observation out,
with Yik itself. Computing

Ŷ
.−ik/
ik =Ê.Yik|Yi1, . . . , Yi,k−1, Yi,k+1, . . . , Yimi/=g{X̂

.−ik/
i .Tik/}, 1� i�n, 1�k�mi, .24/

where
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X̂
.−ik/
i .Tik/= μ̂.t/+

M∑
j=1

Ê.ξij|Yi1, . . . , Yi,k−1, Yi,k+1, . . . , Yimi/ ψ̂j.t/, .25/

we define the Pearson-type weighted prediction error

PE.γ2/=∑
i,k

.Ŷ
.−ik/
ik −Yik/2

v[g{X̂
.−ik/
i .Tik/}]

, .26/

which will depend on the variance parameter γ2 and implicitly also on the number of eigen-
functions M that are included in the model; see equation (19).

We found that the following iterative selection procedure, for choosing the number of eigen-
functions M and the overdispersion parameter γ2 simultaneously, led to good practical results:
choose a starting value for M ; then obtain γ2 by minimizing the cross-validated prediction error
PE with respect to γ2,

γ̂=arg min
γ

{PE.γ2/}: .27/

Then, in a subsequent step, update M by the criterion that is described below, and repeat these
two steps until the values of M and γ2 stabilize. This iterative algorithm worked very well in
practice; typical starting values for M would be 2 or 3.

Specifically, for the choice of M , we adopt a quasi-likelihood-based functional information
criterion FIC that is an extension of the Akaike information criterion AIC for functional data
(see Yao et al. (2005) for a related pseudo-Gaussian likelihood-based criterion). The number of
eigenfunctions M , to be included in the model, is chosen in such a way as to minimize

FIC.M/=−2
∑
i,k

∫ Ŷ ik

Yik

Ŷ ij − t

γ2 v.t/
dt +2M: .28/

The penalty 2M corresponds to that used in AIC; other penalties such as those corresponding
to the Bayes information criterion BIC could be used as well.

Some simple algorithmic restrictions can be imposed in this iteration for the choice of M and
γ so that loops cannot happen, although we never observed this to occur. We also investigated
direct minimization of equation (26) simultaneously for both γ and M. Besides being consid-
erably more computing intensive, this alternative minimization scheme tended to choose more
components and resulted in less parsimonious fits without obtaining better predictions. Instead
of making a parametric assumption about the variance function v, in some cases it may be pre-
ferable to estimate it non-parametrically. This can be done via semiparametric quasi-likelihood
regression (Chiou and Müller, 2005).

4. Simulation results

4.1. Comparisons with generalized estimating equations and generalized linear mixed
models
The simulations were based on latent processes X.t/ with mean function E{X.t/} = μ.t/ =
2 sin.πt=5/=

√
5, and cov{X.s/, X.t/}=λ1 φ1.s/ φ1.t/ derived from a single eigenfunction φ1.t/=

−cos.πt=10/=
√

5, 0 � t � 10, with eigenvalues λ1 = 2 (λk = 0, k � 2). Then 200 Gaussian and
200 non-Gaussian samples of latent processes consisting of n = 100 random trajectories each
were generated by Xi.t/=μ.t/+ ξi1 φ1.t/, where for the 200 Gaussian samples the FPC scores
ξi1 were simulated from N .0, 2/, whereas the ξi1 for the non-Gaussian samples were simu-
lated from a mixture of two normal distributions: N .

√
2, 2/ with probability 1

2 and N .−√
2, 2/
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with probability 1
2 . Binary outcomes Yij were generated as Bernoulli variables with probability

E{Yij|Xi.tij/}=g{Xi.tij/}, using the canonical logit link function g−1.p/= log{p=.1−p/} for
0 <p< 1.

To generate the sparse observations, each trajectory was sampled at a random number of
points, chosen uniformly from {8, . . . , 12}, and the locations of the measurements were uni-
formly distributed over the domain [0, 10]. For the smoothing steps, univariate and bivar-
iate product Epanechnikov weight functions were used, i.e. K1.x/ = .3=4/.1 − x2/ 1[−1,1].x/

and K2.x, y/ = .9=16/.1 − x2/.1 − y2/ 1[−1,1].x/ 1[−1,1].y/, where 1A.x/ equals 1 if x ∈ A and 0
otherwise for any set A. The number of eigenfunctions M and the overdispersion parameter γ2

were separately selected for each run by the iteration (27) and equation (28). These iterations
converged fast, requiring only 2–4 iteration steps in most cases.

We compare the non-parametric LGP method proposed with the popular parametric
approaches provided by GLMMs and GEEs. For the GEE method, we used the unstructured
correlation option and both GEEs and GLMMs were run with linear (methods GEE-L and
GLMM-L) and in addition with quadratic (methods GEE-Q and GLMM-Q) fixed effects. We
use four criteria for the comparisons, measuring discrepancies between estimates and targets
both in terms of latent processes X and response processes Y = g.X/, and comparing both
estimates for mean functions μ=E.X/ and g.μ/ respectively and predictions of subject-specific
trajectories Xi and g.Xi/ respectively. The latter are available for the LGP and GLMM methods,
but not for GEEs, which aim at marginal modelling. The specific criteria for the comparisons
are as follows:

XMSE=
∫

I
{μ̂.t/−μ.t/}2 dt

/∫
I
μ2.t/ dt,

YMSE=
∫

I
[g{μ̂.t/}−g{μ.t/}]2 dt

/∫
I
g2{μ.t/} dt,

.29/

XPEi =
∫

I
{X̂i.t/−Xi.t/}2 dt

/∫
I

X2
i .t/ dt,

YPEi =
∫

I
[g{X̂i.t/}−g{Xi.t/}]2 dt

/∫
I
g2{Xi.t/} dt,

.30/

for i= 1, . . . , n. Summary statistics for the values of these criteria from 200 Monte Carlo runs
are shown in Table 1.

These results indicate that, first of all, the LGP method proposed is not sensitive to the Gauss-
ian assumption for latent processes. Although there is some deterioration in the non-Gaussian
case, it is minimal. This non-sensitivity to the Gaussian assumption has been described before in
functional data analysis in the context of principal analysis by conditional expectation (see Yao
et al. (2005)). Secondly, the non-linearity in the target functions throws the parametric methods
off track, even when the more flexible quadratic fixed effects versions are used. We find that
the LGP method conveys clear advantages in estimation and especially in predicting individual
trajectories in such situations. Whereas the parametric methods are sensitive to violations of
assumptions, the LGP method is designed to work under minimal assumptions and therefore
provides a useful alternative approach.

4.2. Effect of the size of variation
Here we examine the influence of the size of the variation constant δ on model estimation,
including mean function, eigenfunctions and individual trajectories. In addition to criteria (29)
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Table 1. Simulation results for the comparisons of mean estimates and individual trajectory predictions
obtained by the proposed non-parametric LGP method with those obtained for the established parametric
methods GLMM-L, GLMM-Q, GEE-L and GEE-Q, with linear and quadratic fixed effects (see Section 4.1)†

Distribution Method XMSE XPEi YMSE YPEi

25th 50th 75th 25th 50th 75th

Gaussian LGP 0.1242 0.1529 0.2847 0.7636 0.0076 0.0101 0.0205 0.0433
GLMM-L 0.4182 0.3405 0.5843 1.283 0.0265 0.0278 0.0369 0.0577
GLMM-Q 0.4323 0.3479 0.5990 1.319 0.0271 0.0285 0.0377 0.0584
GEE-L 0.4168 — — — 0.0264 — — —
GEE-Q 0.4308 — — — 0.0272 — — —

Non-Gaussian LGP 0.1272 0.1664 0.3166 0.9556 0.0078 0.0109 0.0228 0.0459
(mixture) GLMM-L 0.4209 0.3309 0.5943 1.364 0.0266 0.0280 0.0372 0.0589

GLMM-Q 0.4373 0.3385 0.6118 1.404 0.0274 0.0287 0.0380 0.0597
GEE-L 0.4227 — — — 0.0268 — — —
GEE-Q 0.4396 — — — 0.0277 — — —

†Simulations were based on 200 Monte Carlo runs with n = 100 trajectories per sample, generated for both
Gaussian and non-Gaussian latent processes. Simulation results are reported through summary statistics for error
criteria XMSE and YMSE (29) for relative squared error of the mean function estimates of latent processes X
and of response processes Y , and the 25th, 50th and 75th percentiles of relative prediction errors XPEi and YPEi
(30) for individual trajectories of latent and response processes.

and (30), we also evaluated the estimation error for the single eigenfunction in the model (noting
that

∫
I φ

2
1.t/ dt =1),

EMSE=
∫

I
{φ̂1.t/−φ1.t/}2 dt: .31/

Using the same simulation design as in Section 4.1 and generating latent processes X.t; δ/ =
μ.t/ + δξ1φ1.t/ for varying δ, we simulated 200 Gaussian and 200 non-Gaussian samples (as
described before) for each of δ= 0:5, 0:8, 1, 2. The Monte Carlo results over 200 runs for the
various values of δ are presented in Table 2.

Table 2. Simulation results for the effect of the variation parameter δ†

Distribution δ XMSE EMSE XPEi YMSE YPEi

25th 50th 75th 25th 50th 75th

Normal 0.5 0.1106 0.7662 0.1188 0.1815 0.3366 0.0068 0.0077 0.0119 0.0205
0.8 0.1205 0.3801 0.1430 0.2437 0.5710 0.0076 0.0094 0.0171 0.0338
1 0.1280 0.2434 0.1513 0.2809 0.7857 0.0077 0.0101 0.0203 0.0431
2 0.1616 0.0429 0.2025 0.3851 0.8137 0.0102 0.0144 0.0362 0.0752

Mixture 0.5 0.1134 0.7198 0.1243 0.1913 0.3651 0.0071 0.0081 0.0126 0.0217
0.8 0.1258 0.3910 0.1498 0.2563 0.6691 0.0078 0.0100 0.0188 0.0366
1 0.1323 0.2256 0.1624 0.2986 0.7944 0.0081 0.0113 0.0227 0.0450
2 0.1633 0.0397 0.2041 0.3840 0.8140 0.0103 0.0158 0.0387 0.0768

†Design and outputs of the simulation are the same as in Table 1. EMSE denotes the average integrated mean-
squared error for estimating the first eigenfunction.
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We find substantial sensitivity of the error EMSE in estimating the eigenfunction on the
value of δ. This is caused by the fact that, as δ grows smaller, increasingly more of the variation
in the observed data is due to error rather than to the patterns of the underlying LGP, and
therefore it becomes increasingly difficult to estimate the eigenfunction. This is also observed
in ordinary FPC analysis where the error in estimating an eigenfunction is tied to the size of
its associated eigenvalue—the larger, the better the eigenfunction can be estimated. Although
large values of δ increase the errors in predicting individual trajectories, this is within expec-
tations: for the predictor processes X , this is because the variation of individual trajectories
increases, whereas the binary nature of the responses imposes constraints on how much of this
variation is reflected in the sparse observations; for the response processes, the error increases
much more, which is because the biases in the approximations that are used for these predic-
tions are increasing with δ.

The errors in estimating the mean functions remain fairly stable as long as δ� 1. This is
especially—and not unexpectedly—observed for the mean of predictor processes X , since this
mean estimate is not affected by any approximation error. We conclude that, unless δ is large,
its exact value has a small effect on the errors in mean function estimates and a modest effect on
the errors in individual predictions, and we note that the strong effect on the error in eigenfunc-
tion estimation does not spill over into the predictions for individual trajectories or the mean
function estimates, as the effect is mitigated by the multiplication with δ.

5. Application

Primary biliary cirrhosis (Murtaugh et al., 1994) is a rare but fatal chronic liver disease of
unknown cause, with a prevalence of about 50 cases per million population. The data were col-
lected between January 1974 and May 1984 by the Mayo Clinic (see also Appendix D of Fleming
and Harrington (1991)). The patients were scheduled to have measurements of blood character-
istics at 6 months, 1 year and annually thereafter post diagnosis. However, since many individuals
missed some of their scheduled visits, the data are sparse and irregular with unequal numbers of
repeated measurements per subject and also varying measurement times Tij across individuals.

To demonstrate the usefulness of the methods proposed, we restrict the analysis to the partic-
ipants who survived at least 10 years (3650 days) since they entered the study and were alive and
had not had a transplant at the end of the 10th year. We carry out our analysis on the domain from
0 to 10 years, exploring the dynamic behaviour of the presence of hepatomegaly (0, no; 1, yes),
which is a longitudinally measured Bernoulli variable with sparse and irregular measurements.
Presence or absence of hepatomegaly is recorded on the days where the patients are seen.
We include 42 patients for whom a total of 429 binary responses were observed, where the
number of recorded observations ranged from 3 to 12, with a median of 11 measurements per
subject.

We employ a logistic link function, and the smooth estimates of the mean and covariance
functions for the underlying process X.t/ are displayed in Fig. 1. The mean function of the
underlying process shows an increasing trend until about 3000 days, except for a short delay
at the beginning, and a subsequent decrease towards the end of the range of the data. We also
provide pointwise bootstrap confidence intervals which broaden (not unexpectedly) near the
end points of the domain. The estimated covariance surface of X.t/ displays rapidly decreas-
ing correlation as the difference between measurement times increases. With variance function
v.μ/=μ.1−μ/, the iterative procedure for selecting the number of eigenfunctions and the var-
iance parameter γ that is described in Section 3.2 yielded the choices M = 3 for the number of
components included and γ̂2 =1:91 for the overdispersion parameter. The leave one point out
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Fig. 1. (a) Smooth estimate μ̂.t/ (15) of the mean function of the latent process X.t/ with pointwise 95%
bootstrap confidence intervals and (b) smooth estimate of the covariance function σ̂.s, t/ of X.t/ (for the
primary biliary cirrhosis data)

cross-validated prediction error PE.γ2/, as in equation (26), obtained for the final iteration (the
third iteration), is shown in Fig. 2(a) in dependence on γ2, and the dependence of the FIC-scores
(28) on the number M of components included is shown in Fig. 2(b).

Smooth estimates of the first three eigenfunctions of the underlying Gaussian process X ,
resulting from the choices that were made in the iterative selection procedure, are shown in
Fig. 3(a). The variation is captured by the first two leading eigenfunctions. The first eigenfunc-
tion is roughly similar to the mean function, accounting for 74.2% of total variation, and the
second eigenfunction essentially is a contrast between early and late times, explaining 23.2% of
total variation.

The predicted trajectories Xi.t/, which are defined by equation (22), for the three patients with
the largest projections in the directions of the respective eigenfunctions are shown in Fig. 3(b).
The original data and the predicted trajectories (23) are illustrated in Fig. 3(c). Note that the
sign of the eigenfunctions is arbitrary. These extreme cases clearly reveal how the individual
trajectories Xi and Yi are influenced by the dominant modes of variation. The predicted trajec-
tories of Yi.t/, which were obtained by equation (23) for nine randomly selected subjects, are
shown in Fig. 4. The predicted trajectories Ŷ i.t/ describe the time evolution of the probability
of the presence of hepatomegaly for each individual; it is often increasing, but there are also
subjects with mild or strong declines.
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Fig. 2. (a) Plot of PE(γ2) values (26) of the final iteration versus corresponding candidate values of γ2,
where γ̂2 minimizes PE(γ2) and (b) FIC scores (28) for final iteration based on quasi-likelihood by using the
binomial variance function for 10 possible leading eigenfunctions, where M D 3 is the minimizing value (for
the primary biliary cirrhosis data)

We find that the overall trend of the predicted trajectories Yi.t/ agrees well with the observed
longitudinal binary outcomes, and leave-one-out analysis using equation (24) confirmed this. In
making the comparison between observed data and fitted probabilities, we need to keep in mind
that the Bernoulli observations consist of 0s or 1s, whereas the fitted probabilities and response
processes are constrained to be strictly between 0 and 1. Therefore, long ‘runs’ are expected for
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(22) for the three individuals with the largest projections on the respective eigenfunctions in (a), overlaid with
the overall estimated mean function (- - - - - - -), and (c) observations (�) and predicted trajectories of Yi .t/ as
given in expression (23), corresponding to the above three subjects (for the primary biliary cirrhosis data)
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extreme cases such as that in Fig. 4(b), where the fitted function is bound to be always larger than
the data. Generally, in generalized response models, the variation in the data that corresponds
to the conditional variance of the observations, given their Bernoulli probability, is in principle
unexplained by any model, and only the probabilities themselves and their variation can be
modelled, which may explain only a relatively small portion of the overall observed variation
that is seen in the data.

To illustrate further statistical analysis after estimates for the FPC scores have been obtained,
we regress the first two FPC scores of the underlying Gaussian process on the variable age at
entry into the study S. For this regression of response curves on a scalar predictor we use the
model

E{X.t/|S}=μ.t/+
M∑

j=1
E.ξj|S/ ψj.t/

(Chiou et al., 2004). We demonstrate the estimated regression functions E.ξ̂j|S/ for two com-
ponents j =1, 2 in Fig. 5. The fits are obtained by local linear smoothing of the scatterplots ξ̂j

versus S by local linear smoothing. The regression fits indicate that the second FPC of the latent
process is not much influenced by age at entry, whereas the first FPC remains flat for lower
ages but then increases non-linearly for ages after 45 years. For age at entry above 45 years,
the conditional response curves therefore move increasingly upwards as age at entry increases,
where the shape of the average increase corresponds to the first eigenfunction in Fig. 3. This
means that older age at entry is associated with increasing probability of hepatomegaly.
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Fig. 5. Scatterplot (�) and fitted non-parametric regression of (a) the first and (b) FPC scores on age at
enrolment into the primary biliary cirrhosis study
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6. Discussion

The assumption of small δ implies that the variation in the latent process X is assumed to be
limited, according to the assumption X.t/=μ.t/+ δZ.t/. We note that the small δ assumption
does not affect the methodology proposed, for which the value of δ is not needed and plays no
role. The estimators proposed always target and are consistent for the unique LGP X̃, which
is characterized by mean function ν.t/ and covariance function τ .s, t/, as defined in expression
(8). However, biases may be accrued for response process estimates and especially predicting
individual response trajectories for the case of large δ.

Processes X̃ characterize the data, and their FPC scores can be used for further statistical
analysis. When δ is small, then X∼ X̃, so conditions (1)–(3) are satisfied (approximately) for X̃

as well. Although the approach proposed is always useful to represent the data, even in the case
where δ is not small, the small δ assumption is needed to obtain reasonably accurate estimates
of probability trajectories Y.t/.

Simulation results demonstrate that the methodology proposed outperforms classical para-
metric models such as GEEs and GLMMs in situations where their parametric assumptions
do not apply. The non-parametric method proposed relies on far fewer assumptions, which
makes it more universally applicable. Further statistical analysis such as exploring the effect of
subject-specific covariates can be based on the estimated FPC scores. We note that, in the data
example, mean function and subject-specific trajectories are highly non-linear, emphasizing the
need for non-parametric methodology to analyse such data.
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Appendix A: Local linear smoothers

Local linear versions of the estimators α̂ and β̂, which were introduced in Section 2.1, are given explicitly by

α̂.t/= P2.t/Q0.t/−P1.t/Q1.t/

P0.t/P2.t/−P1.t/2
, .32/

β̂.s, t/= Z̄ + 1
R

(
s−T̄ 10

h
,

t − T̄ 01

h

)(
R02 −R11

−R11 R20

)(
S10
S01

)
, .33/

where

Pr.t/=
n∑

i=1

mi∑
j=1

.t −Tij/
r Kij.t/,

Qr.t/=
n∑

i=1

mi∑
j=1

.t −Tij/
rYij Kij.t/,

Rqr.s, t/= ∑
i:mi�2

∑∑
j,k:j �=k

{
Tij − T̄ 10.s, t/

h

}q {
Tik − T̄ 01.s, t/

h

}r

Kij.s/ Kik.t/,

Sr.s, t/= ∑
i:mi�2

∑∑
j,k:j �=k

{Zijk − Z̄.s, t/}
{

Tij − T̄ 10.s, t/

h

}q {
Tik − T̄ 01.s, t/

h

}r

Kij.s/ Kik.t/,
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Uqr.s, t/= ∑
i:mi�2

∑∑
j,k:j �=k

T
q
ijT

r
ik Kij.s/ Kik.t/,

T̄ qr =Uqr=U00,

Z̄ =U−1
00

∑
i:mi�2

∑∑
j,k:j �=k

ZijkKij.s/Kik.t/,

R=R20R02 −R2
11,

Zijk =YijYik, Kij.t/=K{.t −Tij/=h}, K is a kernel function and h a bandwidth. Of course, we would not
use the same bandwidth to construct α̂ and β̂; we expect the appropriate bandwidth for β̂ to be larger than
that for α̂.

Both α̂ and β̂ are conventional, except that diagonal terms are omitted when constructing the latter. The
data within the ith block, i.e. Bi ={Yij for 1� i�mi}, are not independent of one another, but the n blocks
or trajectories B1, . . . , Bn are independent. Therefore, a leave one trajectory out version of cross-validation
(Rice and Silverman, 1991) can be used to select the bandwidths for either estimator.

Appendix B: Positive definiteness of covariance estimation

Since the estimator τ̂ .s, t/ is symmetric, we may write

τ̂ .s, t/=
∞∑

j=1
θ̂j ψ̂j.s/ψ̂j.t/, .34/

where .θ̂j , ψ̂j/ are (eigenvalue, eigenfunction) pairs of a linear operator A in L2 which maps a function f
to the function A.f/, which is defined by A.f/.s/=∫

I τ̂ .s, t/f.t/ dt. It is explained after equation (16) how
these estimates are obtained. Assuming that only a finite number of the θ̂js are non-zero, the operator A
will be positive semidefinite or, equivalently, τ̂ will be a proper covariance function, if and only if each
θ̂j �0. To ensure this property we compute equation (34) numerically and drop those terms that correspond
to negative θ̂js, giving the estimator

τ̃ .s, t/= ∑
j�1:θ̂j>0

θ̂j ψ̂j.s/ ψ̂j.t/: .35/

The modified estimator τ̃ is not identical to τ̂ if one or more of the eigenvalues θ̂j are strictly
negative. In such cases, the estimator τ̃ has strictly greater L2-accuracy than τ̂ , when viewed as an esti-
mator of τ .

Theorem 1. Under regularity conditions, it holds that

∫
I2

.τ̃ − τ /2 �
∫

I2
.τ̂ − τ /2: .36/

To prove this result, we show that condition (36) holds with strict inequality whenever τ̃ is a non-trivial
modification of τ̂ , i.e. when τ̃ �= τ̂ . In the series on the right-hand side of equation (34) we may, without
loss of generality, order the terms so that those corresponding to non-zero θ̂js are listed first, for 1� j �J
say, and θ̂j =0 only for j �J +1. The sequence ψ̂1, . . . , ψ̂J is necessarily orthonormal, and we may choose
ψ̂J+1, ψ̂J+2, . . . so that the full sequence ψ̂1, ψ̂2, . . . is orthonormal and also complete in the class of square
integrable functions on I.

We may therefore express the true covariance τ in terms of this sequence, as a conventional expansion
in a generalized Fourier series:

τ .s, t/=
∞∑

j=1

∞∑
k=1

ajkψ̂j.s/ ψ̂k.t/, .37/

where ajk =∫
I2 τ .s, t/ ψ̂j.s/ ψ̂k.t/ ds dt. Expansions (34), (35) and (37) imply that
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I2

.τ̃ − τ /2 =∑∑
j, k:j �=k

a2
jk +

∞∑
j=1

.ajj − θ̃j/
2,

∫
I2

.τ̂ − τ /2 =∑∑
j,k:j �=k

a2
jk +

∞∑
j=1

.ajj − θ̂j/
2,

.38/

where θ̃j = θ̂j if θ̂j �0 and θ̃j =0 otherwise. The fact that τ is a proper covariance function, and so enjoys
the positive semidefiniteness property, implies that ajj �0 for each j. Result (36) follows from this property
and expression (38).

Appendix C: Some theoretical properties of estimators (32), (33), (13) and (15)

Standard arguments show that local linear forms of the estimators α̂ and β̂, which were given in Ap-
pendix A, converge to α and β at mean-square rates ρα.h/ = .nh/−1 + h4 and ρβ.h/ = .nh2/−1 + h4

respectively, where h denotes the bandwidth that is used to construct either estimator. Therefore, the
optimal bandwidths are of sizes n−1=5 and n−1=6 respectively, and the optimal mean-square convergence
rates are n−4=5 for α̂ and ν̂, and n−2=3 for β̂. Hence, in view of the manner of construction (13) of τ̂ in terms
of α̂ and β̂, the optimal mean-square convergence rate of τ̂ to τ is also n−2=3. To obtain these results it
is necessary to incorporate a small ridge parameter in the denominators of estimators, to guard against
difficulties with sparsity of data among the observation times Tij . The ridge may be taken as small as n−c,
for sufficiently large c > 0. Adjustments of this type are common for local linear estimators (Fan, 1993;
Seifert and Gasser, 1996; Cheng et al., 1997).

These results are exact, e.g. in the sense that upper and lower bounds to mean-squared errors of α̂ and ν̂,
and for β̂ and τ̂ are of sizes ρα.h/ and ρβ.h/ respectively, provided that the mis are uniformly bounded and
the number of mis that strictly exceed 1 is bounded above a constant multiple of n. However, the mean-
squared errors will not admit standard asymptotic formulae, e.g. ρβ.h/ ∼ C1.nh2/−1 + C2h

4 for positive
constants C1 and C2, unless additional conditions are imposed to ensure, for instance, that the mis that
strictly exceed 1, and the proportion of times that they exceed 1, have well-defined long run ‘average’ values
in an appropriate sense. It is sufficient, but not necessary, that the mis represent conditioned-on values
of independent and identically distributed random variables distributed as the integer-valued variable M ,
where P.M �2/>0 and, for some integer k �2, P.M �k/=1. Additionally, more conventional regularity
conditions should be assumed. In particular, bothα and β should have two continuous derivatives, and the
moment conditions (1) should hold. Standard methods may also be used to show that leave one block
out cross-validation achieves asymptotic optimality, in the estimation of α and β, to first order and in an
L2-sense.

We remark that if we leave the longitudinal situation, and contrary to what we assumed before and the
conditions that we discussed earlier, assume for a moment that the mis can take very large values, with
high frequency as n increases, then convergence rates can be faster than those which were discussed above.
In particular, if the number of values of m1, . . . , mn that exceed a divergent quantity is bounded below by
a fixed constant multiple of n, i.e. if

lim inf
n→∞

[
1
n

n∑
i=1

I{mi >p.n/}
]

> 0,

where p.n/→∞ and I.·/ denotes the indicator function of the indicated property, then the mean-squared
errors of α̂ and ν̂, and of β̂ and τ̂ equal o{.nh/−1}+ O.h4/ and o{.nh2/−1}+ O.h4/ respectively, rather
than simply the values O{.nh/−1 +h4} and O{.nh2/−1 +h4} that were discussed in the second paragraph
of this section. In these formulae the terms in .nh/−1 and .nh2/−1 represent variance contributions to
mean-squared error. The fact that variance contributions are of relatively small order if the proportion
of large mis is sufficiently high reflects the additional information that is available about the process Xi in
such cases.

Appendix D: Details for equation (21)

Let X̃i = .X̃i1, . . . , X̃imi
/T and ψi,j = .ψj.Ti1/, . . . ,ψj.Timi

//T, referring to expansion (16). We have cov.ξij ,
X̃i/=θjψ

T
i,j ,
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σikl ≡ cov.X̃ik, X̃il/=∑
j

θj ψj.Tik/ ψj.Til/+ δkl

γ2 v[g{μ.Tik/}]
g.1/{μ.Tik/}2

,

where δkl equals 1 if k = l and 0 otherwise, and

di ≡ X̃i −E.X̃i/=
(

Yi1 −g{μ.Ti1/}
g.1/{μ.Ti1/} , . . . ,

Yi1 −g{μ.Ti1/}
g.1/{μ.Ti1/}

)T

:

Denote cov.X̃i, X̃i/ by Σi = .σikl/1�j, l�mi
. Then the explicit form of the matrices Aij in equation (21)

is given by

Ê.ξij|Yi1, . . . , Yimi
/= θ̂jψ̂i,jΣ̂

−1
i d̂i, .39/

where we substitute μ by μ̂ at expression (15), γ by γ̂ at expression (27), and θj andψj by the corresponding
estimates for eigenvalues and eigenfunctions, derived from σ̂.s, t/ to obtain the estimated version.
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