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Nonparametric Cepstrum Estimation via Optimal
Risk Smoothing
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Abstract—This paper proposes a new cepstrum estimation pro-
cedure that is capable of producing smoother and improved cep-
strum estimates without the use of any parametric modeling. This
procedure consists of two main steps: In the first step, it applies a
so-called grid transformation to the empirical cepstral coefficients,
while in the second step it nonparametrically smooths the trans-
formed coefficients with local linear regression. The Stein’s unbi-
ased risk estimation (SURE) approach is adopted to select both the
extent of the grid transformation and the amount of smoothing. It
is shown that the use of this SURE selection method for the current
problem is asymptotically optimal in a well-defined sense. Lastly,
the good practical performance of the new cepstrum estimation
procedure is demonstrated via numerical experiments.

Index Terms—Bandwidth selection, grid transformation, local
linear regression, Stein’s unbiased risk estimation (SURE), thresh-
olding.

I. INTRODUCTION

T HE study of cepstrum can be dated as early as [3]. Since
then, it has been applied widely in many different areas,

including spectral estimation, filter design, image processing
and geology, just to name a few; e.g., see [19], [20], [22], and
references given therein. As noted by [19] and [25], given the
many successful stories of applications of cepstrum, it is al-
most certain that new and useful applications of cepstrum will
emerge. Therefore, it is important to have high-performance
procedures for cepstral estimation. The goal of this paper is to
propose such a new estimation procedure.

Suppose a finite-sized realization of a real-
valued, discrete-time, stationary signal is observed. Denote
its power spectral density as , and write
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It is assumed that for all . The cepstrum of is then
defined as

It is straightforward to show the symmetry property

Thus for the rest of this paper, we shall focus on the dis-
tinct cepstral coefficients . It has been observed that,
for many practical situations [11], [26], a lot of these cepstral
coefficients are either zeros or extremely small in magnitude.
In fact, many thresholding-based cepstrum estimation methods
were motivated by this observation. In the next section, more
will be said about such thresholding methods.

Denote the periodogram of the observed signal as

As with , is also assumed to be positive for all . A first
crude estimate of the cepstrum is given by the empirical cepstral
coefficients (sometimes also known as quefrency values)

where

if
otherwise

and is Euler’s constant. It is known that [26],
under some regularity conditions and for large , these empir-
ical cepstral coefficients can be well modeled by inde-
pendent normal random variables with

(1)

where

if
if .

(2)

In the remainder of this paper, we will assume that this distri-
butional property is exact and from which our new cepstrum
estimator is built upon. This new estimator is nonparametric in
nature and attempts to provide a smoother and better cepstral
estimate while avoiding the use of any parametric model.
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The rest of this paper is organized as follows. Section II
presents the proposed nonparametric cepstrum estimator. In
Section III, some theoretical properties of the estimator are
established. The empirical properties of the proposed estimator
are then evaluated in Section IV via a simulation study. Lastly,
concluding remarks are offered in Section V, while technical
details are deferred to the Appendix.

II. PROPOSED METHOD

Given (1), (2), and the fact that many of the cepstral coeffi-
cients are zeros or small, a sensible method for estimating the
cepstrum is thresholding (e.g., [26]). That is, the estimate for

is set to zero if is less than a thresholding value; other-
wise, use as the estimate. The thresholding value is typically
chosen as a multiple of . This thresholding approach is fast
and performs reliably for many different types of cepstra. How-
ever, if the cepstrum is “smooth” in the sense that is
small whenever their “horizontal distance” is small, then
the thresholding estimation of can be improved upon. It is
because one could borrow useful information from the neigh-
boring empirical cepstral coefficients; i.e.,
for some small cutoff distance . Indeed, our proposed method
is motivated by this argument; loosely speaking, it estimates
by using a weighted average of all elements in
for a carefully chosen .

A. Grid Transformation

Due to the following reason, the proposed method first ap-
plies a so-called grid transformation to the data before aver-
aging them. For many real-life signals, such as seismic and un-
derwater acoustic channel data [5], [14], a large portion of their
cepstral energy is concentrated in the beginning part of their cor-
responding cepstra. In other words, a typical cepstrum has
large values and changes more rapidly at its left end, while its
right tail is relatively long and flat. This suggests that a smaller

should be used when is small and a larger should be used
for large values of .

The same effect can be more conveniently achieved by ap-
plying a grid transformation and use the same for all values of

; e.g., see [12, Sec. 2.3.3]. For simplicity, call the “horizontal
distance” of from the origin the -coordinate. Therefore the

-coordinate of is , and the whole empirical cepstrum can
be plotted by tracing the points in the plane.
Now, the grid transformation is to rescale these -coordinates
so that the horizontal distance between and becomes
larger for small values of and smaller for large .

Such a grid transformation can be accomplished by applying
a function to the -coordinates of . The
subscript is used to denote a tuning parameter that controls
the extent of the transformation; more will be said about this
below. This function should be strictly increasing and con-
cave, and it has the identify function as its special case for a
particular value of . We have investigated the use of different

’s that satisfy these conditions, including
and . Our extensive numer-
ical experience suggested that the choice of is not crucial,

Fig. 1. An artificial empirical cepstrum ���� �� ��’s (top left panel) and dif-
ferent grid-transformed cepstra ��� � �� ��’s with different values of �. One can
see that for the artificial cepstrum displayed in the top left panel, a small � is
required to avoid oversmoothing at the left end, while a large � is required to
stabilize the noisy right tail. However, for a suitably grid-transformed cepstrum,
the same � can be applied to all regions.

although the following choice occasionally provided better re-
sults:

For this reason, we shall use this choice of in the rest of
this paper; see Fig. 1 for an example illustrating the effect
of . We will discuss the choice of in Section II-C. With
this grid transformation, one could imagine that the set of
original empirical cepstral coefficients has been transformed
from to . The next step is to smooth

nonparametrically using local linear regression.
The rationale behind this local smoothing is that if the cep-
strum is locally smooth, estimation of can be improved by
borrowing information from neighboring ’s.

B. Smoothing Using Local Linear Regression

Denote the local linear regression estimate of as . For
each , is calculated by performing a weighted least squares
regression using the as the response and
as the predictor. The weights are given by ,
where is known as the kernel function, is the band-
width that controls the amount of smoothing, and

. The bandwidth plays the same role as the cutoff
distance mentioned previously. It is known that [10, Sec. 3.2]
as long as is unimodal and symmetric about 0, its exact
form is relatively unimportant. In all our numerical work to be
reported below, is taken as the standard normal density.
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The estimate is defined as the intercept of the best fitting
regression line that minimizes the following weighted
residual sum of squares

The minimizers of the above are shown to be

(3)

where , is a -by-2 matrix with
the th row as , and is a diagonal matrix with
diagonal elements . For further
details on local linear regression, see [10] and [27] for examples.

Since both and are independent of ’s, from (3) we
can see that , or equivalently , is a linear combination of the

’s. Thus, we can write

(4)

for some ’s that are independent of the ’s; these ’s
will be used in the next subsection. In other words, if is the ma-
trix with as its th element, then (4) can be expressed
as

with . The matrix is sometimes known as
the smoothing matrix.

We close this subsection by noting that the above estimate
for is a function of the transformation parameter and
the bandwidth , but for clarity this dependence has been
suppressed in the notation of . To use as a cepstrum
estimator, one needs to choose . We have developed such
an automatic selection method, to be described next.

C. Stein’s Unbiased Risk Estimation

A reasonable choice for is the pair that jointly mini-
mizes the following risk function:

(5)

Of course, in practice, is an unknown quantity, so a di-
rect minimization is not possible. A common approach to over-
come this issue is to construct an unbiased estimator for
and choose as the minimizer of the resulting estimator.
This approach is commonly known as Stein’s unbiased risk esti-
mation (SURE) [24] (see also [23] for a more elaborated discus-
sion). It has been successfully used for tackling different prob-
lems, such as wavelet thresholding [1], [8], spectral density es-
timation [15], [28], and image denoising [2], [4], [21]. For gen-
eralizations of SURE, see [9] and [13] for examples.

For the current cepstrum smoothing problem, we have de-
rived an approximate unbiased estimator for . This es-
timator is exactly unbiased if (1) and (2) were true. We propose
to choose as its joint minimizer. The expression of this

estimator is given below, and the justification for its unbiased-
ness under (1) and (2) is provided in Appendix A.

Theorem 1: Under (1) and (2), the risk estimator de-
fined in (6) is an unbiased estimator of . That is

where

(6)

To sum up, our proposed estimator is defined by (4), with
chosen as the minimizer of (6). Below, we refer to this

estimator as SURESmooth.

D. Minimization of

A straightforward but also time-consuming method to mini-
mize with respect to is to conduct a two-dimen-
sional grid search. For , if the search was performed
on a 20 20 grid of , our implementation requires around
10 s to finish with a Core2Duo 2.4 GHz processor. This may not
be fast enough for many real problems. However, we have ob-
served that, for many different data sets, the surfaces of
are smooth when plotted against and . This suggests that
many simple strategies should work well for speeding up the
minimization of . We have used the following.

The idea behind our strategy is to decompose the two-dimen-
sional search into a sequence of one-dimensional searches. First,
we fix a value for at, say, , and find the corresponding value
of that minimizes . Denote this value of as . Then,
we set as and find the value of so that is mini-
mized. Denote this value of as , and next we find the value of

that minimizes . We keep iterating this process until
the value of cannot be made smaller. When comparing
to more classical methods such as Newton–Raphson, one attrac-
tive property of this strategy is that no calculation is needed for
the gradient or higher derivatives of . On average, this
procedure takes about 2 s to finish with the same machine men-
tioned above. When comparing to many fast cepstrum estima-
tion procedures such as the thresholding method of [26], our
approach is still computationally more expensive; e.g., our im-
plementation of [26] on average takes about 0.005 s to finish,
making our method about 400 times slower. However, the po-
tential improvement in estimation quality do make our approach
a viable alternative.

III. ASYMPTOTIC OPTIMALITY OF SURESmooth

In this section, we study the theoretical properties of SURES-
mooth. To be more specific, we shall show that the use of the
unbiased risk estimator (6) for choosing is asymp-
totically optimal in a well-defined sense, as stated in (8).

For technical simplicity, we shall assume that the risk esti-
mator is minimized over a discrete index set . In
other words, its joint minimizer is restricted to be an element of

, where can be seen as a two-dimensional gridded value
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of . The grid density of could always be made suf-
ficiently dense enough so that in practice there is virtually no
difference if is minimized over or . We shall de-
note the order of the cardinality of as ; i.e.,
for some .

Define the loss function for the SURESmooth estimator as

(7)

where . Let be the minimizer of
(6). Then, our proposed selection procedure is asymptotically
optimal in the following sense:

(8)

Similar definitions for asymptotic optimality have also been
studied by previous authors in different contexts, for both
parametric and nonparametric model selection problems (e.g.,
[7], [16], [17]).

Recall that is the smoothing matrix; i.e., .
Denote the maximum singular value of by . The assump-
tions required for establishing the above asymptotic optimality
of are:

(A1) ;

(A2) .
Assumption (A1) is natural, and in fact if , then is
inadmissible and dominated by some other linear estimators [6].
To understand (A2), one first notes that the optimal risk
is typically of order for some as . If the
cardinality of is of polynomial order , one can see that
the upper bound on its magnitude will usually allow
a sufficient grid search in practice.

The following theorem summarizes the aforementioned de-
sirable theoretical property of the proposed selection method.
The proof is deferred to Appendix B.

Theorem 2: Under (1) and (2), the risk estimator is
asymptotically optimal under assumptions (A1)–(A2). That is,
(8) holds for .

IV. SIMULATION RESULTS

A simulation study has been conducted to evaluate the empir-
ical performance of SURESmooth. The following four models
were used for generating the testing signals :

• Model 1: a broadband MA with a medium dynamic range
log-spectrum

• Model 2: A narrowband ARMA with a large dynamic range
log-spectrum

• Model 3: A broadband AR with a small dynamic range
log-spectrum

Fig. 2. Simulation results: MSE averages in the cepstrum domain for Model 1
(top left panel), Model 2 (top right panel), Model 3 (bottom left panel), and
Model 4 (bottom right panel).

• Model 4: A broadband MA with a medium dynamic range
log-spectrum

In the above, the ’s are iid white noise. Models 1 and 2
have been used by [26] in the context of cepstrum thresholding,
while the remaining two models have been used by various re-
searchers for spectrum smoothing (e.g., [15] and [18]). We con-
sidered five different sample sizes: for to 11. For
each combination of model and sample size, 500 realizations of

were generated. Then, SURESmooth was applied to each
generated realization to obtain the estimate for . The fol-
lowing mean squared error (MSE) was computed as a measure
for quality of fit:

For comparison purposes, the SThresh method of [11] and [26]
was also applied to all generated to estimate , and the
corresponding MSEs were also computed.

The averages of the computed MSEs for different combina-
tions of model, sample size, and estimation method are sum-
marized in Fig. 2. From these plots, one could see that the pro-
posed method SURESmooth always gave smaller MSE averages
than SThresh. We have also applied paired -tests to these MSE
values, and the results show that the MSE average differences
are statistically significant.

Since very often a major goal of cepstral analysis is to per-
form spectrum or log-spectrum estimation, for each set of esti-
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Fig. 3. Simulation results: MSE averages in the log-spectrum domain for
Model 1 (top left panel), Model 2 (top right panel), Model 3 (bottom left panel),
and Model 4 (bottom right panel).

mated cepstrum , we also calculated the corresponding esti-
mated log-spectrum

and its MSE, defined as

The averages of these MSEs are displayed in Fig. 3 in a similar
fashion as Fig. 2. Once again, SURESmooth seems to be a pre-
ferred method.

To visually evaluate the quality of the fitted log-spectra, we
ranked the 500 SURESmooth MSEs that correspond to the com-
bination of Model 1 and . The estimated log-spec-
trum that has the 250th smallest MSE is shown in Fig. 4. Sim-
ilar plots were obtained for Model 2 to Model 4, and for the
SThresh method; see Figs. 4 to 7. These plots seem to suggest
that those SURESmooth estimates tend to be superior to those
from SThresh.

V. CONCLUDING REMARKS

In this paper, a new and automatic method for cepstrum
estimation, SURESmooth, is presented. This method is non-
parametric and capable of producing smoother and better
cepstrum estimates without imposing any parametric model.
The two main ingredients of SURESmooth are grid transfor-
mation and local linear smoothing. The tuning parameters of

Fig. 4. Estimated log-spectra of Model 1 obtained from SThresh and SURES-
mooth with �� � ����. In both panels, the solid line represents the 250th
smallest MSE estimated log-spectrum, while the dotted line is the true log-spec-
trum.

Fig. 5. Similar to Fig. 4, but for Model 2.

SURESmooth are chosen automatically by Stein’s unbiased risk
estimation approach. It is theoretically shown that this param-
eter choice is asymptotically optimal. In addition, simulation
results suggest that SURESmooth can be a better alternative for
estimating both cepstrum and log-spectrum.

APPENDIX A
PROOF OF THEOREM 1: UNBIASEDNESS OF

This appendix outlines the derivation of the risk estimator (6).
We iterate again that this estimator is developed under (1) and
(2).
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Fig. 6. Similar to Fig. 4, but for Model 3.

Fig. 7. Similar to Fig. 4, but for Model 4.

First, we calculate

(9)

Note that the second term on the right-hand side is .
Using from (4) and , the last
term can be calculated as

As whenever , the previous calcula-
tion becomes

Now, summing (9) over and dividing by , we have

Replacing the expectation operation with summation, we estab-
lish that

is an unbiased estimator for under (1) and (2). The es-
timator (6) can then be straightforwardly obtained by replacing

with the corresponding values given in (1) and (2).

APPENDIX B
PROOF OF THEOREM 2: ASYMPTOTIC OPTIMALITY OF

This appendix presents the proof for Theorem 2. From the
derivation in Appendix A, given in (2) does not
depend on , hence minimizing (6) is equivalent to
minimizing

For convenience, we shall deal with in the remainder of
this section and abbreviate as . Let , and
thus . Write and ,
where is the identity matrix. We have

(10)

Since does not depend on , in order to prove (8), it is
sufficient to show that

(11)

(12)
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and

(13)

To show (11), we apply Chebyshev’s inequality: For any
, noting , one has

(14)

for some constant . Since
and (A2), the right-hand side of (14) is

bounded by . Then, (11) is
proved.

Equation (12) can be shown by observing

and

for some . It is easy to check that, for normal random
vector distributed as in (1),

. Then, (12) follows by (A2), for any and
some

To show (13), one notes

Then, it is sufficient to show

(15)

and

(16)

which is similar to the proofs of (11) and (12). Observing

that leads to (15), while

completes the proof of (16).
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